
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A282 955

THESIS

Design and Implementation of a Prototype
Database for Part Information to Support the

MK92 Fire Control System Maintenance Advisor
Expert System 1C

by _IC- 01

Susan G. Talley Au
March, 1994

Thesis Advisor: Magdi Kamel
Approved for public release; distribution is unlimited.

DTI1 QUALITY TINSPECTED 5

94-24737 0.)

S04 0 49.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

i I f 121 k d um th f W ° -Avo ., p o, iu li.n.o t a ud ie. edging
dm ma, emm and submibg faa d" 26"6. and cmiploug and ravimlwug faa Govecti of hfommotm Sad cmenma tegmding "a Iad aift oýrý7 *goffh osioldin. of nfouasalno h cbedig suggadin for nudmciag fae uzdcm. in Wabbageom IlbAdquaia 3era, ai. Dfemw ommt im aforma
Opwatm and bpin%. 1215 5 Num Dmvig Highway. Uia 1204. Ailligbam. VA 22202-4M0. and Wo ft Office of Moiganowt and Dodge. lPuw k Ra~wdm

Pri 76".186) Wisbialmi DC 2055M._ _ __ _ _

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1 1994 March 30 Master's Thesis

4. TITLE AND SUBTITLE DESIGN AND IMPLEMENTATION OF A 5. FUNDING NUMBERS
PROTOTYPE DATABASE FOR PART INFORMATION TO SUPPORT
THE M]K FIRE CONTROL SYSTEM MAINTENANCE ADVISOR
EXPERT SYSTEM

6. AUTHOR(S) Susan G. Talley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITOR]NG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MON1TORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBIMON/AVAILABUITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT On=mwn 200 words)
The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems found aboard U. S. Oliver
Hazard Perry class FFGs. This system, based on 1970's technology, frequently requires extensive
troubleshooting and supplemental shore-base support. A maintenance advisor expert system is being
developed to assist shipboard technicians in correctly diagnosing system faults, providing expert advice
concerning part replacement or further tests which should be made.

Additional information provided by the expert system includes documentation references, alternate
location for a part, and part numbers. Storing such information in a relational database that communicates
with the expert system would greatly improve its maintainability, modifiability, and accuracy.

This thesis addresses the design and implementation of a database to support the MK92 MOD 2 FCS
Maintenance Advisor Expert System using Microsoft AccessTM. This database includes such functions as
part and replacement information, atabase maintenance, and expert system support. Research revealed that
the currently supported WindowsTM interprogram communications mechanism of Dynamic Data Exchange
(DDE), as supported by the current versions of Access and Softsell AdeptTM, will not adequately support
the database to expert system interface requirements. Suggestions for alternative interface solutions are
provided in the thesis.

14. SUBJECT TERMS Database. Expert System. MK92 MOD 2 Fire Control System. 15. NUMBER OF
Databm Design and Implementation. Database Application. PAGES 199

"16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIF- 19. SECURITY CLASSII- 20. LMITATION OF

CATION OF REPORT CATION OF TRW PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-2W0-5500 Standard Form 298 (Rev. 2-49)

i

Approved for public release; distribution is unlimited.

Design and Implementation of a Prototype Database
for Part Information to Support the

MK92 Fire Control System Maintenance Advisor Expert System

by

Susan G. Talley
Lieutenant Commander, United States Navy

B.S.M.E., University of Washington

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author-
S Susan G. Talley

"*-th•aj -IfiiasAdvis-or

S•

Department Of System...m~ent

ABSTRACT

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems

found aboard U. S. Oliver Hazard Perry class FFGs. This system, based on 1970's technology,

frequently requires extensive troubleshooting and supplemental shore-base support. A

maintenance advisor expert system is being developed to assist shipboard technicians in correctly

diagnosing system faults, providing expert advice concerning part replacement or further tests

which should be made.

Additional information provided by the expert system includes documentation references,

alternate location for a part, and part numbers. Storing such information in a relational database

that communicates with the expert system would greatly improve its maintainability,

modifiability, and accuracy.

I This thesis addresses the design and implementation of a database to support the MK92

MOD 2 FCS Maintenance Advisor Expert System using Microsoft AccessTM. This database

includes such functions as part and replacement information, database maintenance, and expert

system support. Research revealed that the currently supported Windows interprogram

communications mechanism of Dynamic Data Exchange (DDE), as supported by the current

versions of Access and Softsell AdeptTM, will not adequately support the database to expert

system interface requirements. Suggestions for alternative interface solutions are provided in the

thesis. -Accesion For

NTIS CRA&I
DTIC TAB
Unannounced

Justification .-.................

Distribution I

Availability Codes

Avail and or
Dist Special

i-ii,,

TABLE OF CONTENTS'

1. INTRODUCTION ... 1

A. BACKGROUND .. 1

B. PURPOSE/OBJECTIVES .. 2

C. RESEARCH QUESTIONS ... 2

D. SCOPE AND LIM ITATIONS OF THESIS .. 2

E. METHODOLOGY .. 3

F. THESIS ORGANIZATION .. 3

H. REQUIREM ENTS ANALYSIS .. 5

A. DATA REQUIREMENTS .. 6

1. Entities and Attributes ... 6

a. General Description ... 6

b. Specific System Entities and Attributes 6

2. Relationships .. 7

a. General Description .. 7

b. Specific System Relationships ... 8

B. PROCESS REQUIREM ENTS ... 9

1. Process Decomposition .. 10

2. System Data Flow Diagrams (DFDs) .. 10

a. Context Diagram .. 11

b. Systems Diagram .. I I

(1) General Description .. 11

(2) Subsystem Descriptions ... 12

c. Middle Level and Primitive Level DFDs 12

(1) General Description .. 12

iv

(2) Parts Information Subsystem ... 13

(3) Data Store Maintenance Subsystem 14

(4) System Usage Subsystem .. 17

C. OUTPUT OF REQUIRPEMENTS ANALYSIS PHASE 18

IIL DATABASE SYSTEM DESIGN .. 19

A- DATA DESIGN .. 19

1. General Procedures ... 19

2. Specific Database Systems Relations .. 20

B. PROCESS DESIGN ... 22

1. M enu D esign .. 22

a. General Design Strategy .. 22

b. Specific Design .. 22

(1) User Menu ... 23

(2) Administrator (Admin) Menu 26

2. General Form/Screen Use and Design .. 28

3. Process Logic .. 29

4. Specific System Reports and Associated Logic 29

a. User Forms ... 29

(1) Browse Part Supply Information 29

(2) Update Part Supply Status .. 30

(3) Update Circuit Card Information (By Node#) 31

(4) Update Circuit Card Information (By UD#) 32

b. Administrator (Admin) Forms ... 33

(1) Common User and Admin Forms 33

v

(2) Unique Admin Forms - Update Circuit Information

(By N ode#) ... 33

5. Report D esign .. 35

a. U ser Reports .. 35

(1) Parts Not On Hand Report 35

(2) Parts On Order Report .. 36

(3) Parts Under Stock Report ... 36

b. Admin Reports .. 36

C. CONCLUSION OF DESIGN PHASE ... 37

IV. DATABASE SYSTEM IMPLEMENTATION .. 38

A. SOFTWARE SELECTION .. 38

1. Software Requirements .. 38

2. Available Software Programs: Advantages and Disadvantages 39

a. Microsoft AccessTM DBMS .. 39

b. ParadoxTM DBMS for Windows 39

C. Microsoft FoxProTM DBMS for Windows 40

3. DBMS Selected ... 40

B. MICROSOFT ACCESSTM DBMS OVERVIEW 40

1. Tables .. 41

a Table Creation and Definition .. 41

b. Establishing Relationships Between Tables 43

c. Data Entry ... 44

2. Q ueries ... 44

a. Types of Queries ... 45

b. Query Development ... 45

vi

3. Form s .. 46

a. Form Development Environment .. 46

b. Menu Screens ... 48

c. Input/Output Screens .. 49

4. Reports .. 50

5. Macros ... 51

a. Macro Design ... 51

b. Using Macros With Forms ... 53

C. Linking Input and Output Forms .. 53

6. Modules ... 54

a. Use of Access Basic .. 54

b. Access Basic Language ... 55

C. DATA IMPLEMENTATION ... 56

D. PROCESS IMPLEMENTATION ... 57

1. Process Development Example .. 57

a. Implementation of Specific Process Tasks 57

b. Process Example ... 57

2. Query Development and Examples ... 59

a. Parts On Order Query ... 59

b. System Parts List Query ... 61

3. Menu/Screen/Form Development ... 63

a. Update Node-Replacement - Admin Form 63

(1) Form: Replacement Info Sub(sub)form 63

(2) Form: Node-Replacemen Info Subform 64

(3) Form: Node-Replacement Info 65

vii

b. Input N ode# Form .. 66

4. Report D evelopment .. 66

a. Parts On Order Report .. 66

(1) Report: Parts On Order Subreport 66

(2) Report: Parts On Order ... 67

b. System Parts List Report .. 68

(1) Report: System List Subreport 68

(2) Report: System Parts List .. 69

E. OUTPUT OF THE IMPLEMENTATION PHASE 70

V. INTERFACE BETWEEN EXPERT AND DATABASE SYSTEMS 71

A. WINDOWS INTERPROGRAM COMMUNICATION 71

1. Dynamic Data Exchange (DDE) ... 71

a. DDE in Access .. 72

b. DDE in Adept .. n73

2. Object Linking and Embedding (OLE) ... 74

B. IMPLEMENTATION OF DDE INTERFACE BETWEEN ADEPT

AND ACCESS APPLICATIONS .. 76

1. General e ... 76

2. Possible Solutions..................................... 76

a. Establishing Communications: First Approach 77

(1) Methodology ... 77

(2) Results.. 77

b. Second Approach ... 77

(1) Methodology ... 77

(2) Results .. 78

viii

c. Third A pproach .. 78

(1) M ethodology ... 78

(2) R esults .. 79

d. Fourth A pproach .. 80

(I) Methodology 0...... 0

(2) Phased Testing .. 80

(3) Results .. 81

2. Implementation Specifics ... 82

a. Node Number from Adept to Access 82

b. Part Information Records from Access 83

(1) Part Information Query by Access 83

(2) Information Request by Adept 8. 4

c. Display of Part Information to User 84

C. FINAL RESULTS .. 86

VL LESSONS LEARNED AND CONCLUSIONS ... 89

A. SPONSOR FEEDBACK ABOUT PROTOTYPE 89

1. Expert System Interface .. 89

a. Acknowledged Communication Problems 89

b. Performance Issue ... 89

2. Parts Supply Information Subsystem .. 90

3. DB Maintenance Subsystem ... 90

4. Usage Subsystem ... 90

5. Administrator and User Interface ... 90

B. DIRECTION OF FOLLOW-ON WORK .. 91

1. Expert System - Database Interface ... 91

ix

2. Database Application Functionality .. 92

3. Database Application Environment .. 92

4. D ocum entation ... 92

C. LESSONS LEARNED ... 92

1. D atabase Selection ... 92

2. Application Development ... 93

D . CON CLUSION .. 93

APPENDIX A - ENTITIES, ATTRIBUTES, AND ENTITY-RELATIONSHIP

D IAG RAM ... 94

A. ENTITY DEFINITIONS AND ATTRIBUTES 94

B. ATTRIBUTE DEFINITIONS .. 95

C. ENTITY-RELATIONSHIP (E-R) DIAGRAM 97

APPENDIX B - DECOMPOSITION AND DATA FLOW DIAGRAMS 98

APPENDIX C - MENU H[ERARCHY AND SCREENS .. 112

A. MENU HIERARCHY .. 112

B. M ENU SCREEN S .. 114

APPENDIX D - PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS 121

A. PROCESS LOGIC .. 121

1. U ser Procedures .. 121

2. Administrator Procedures .. 129

3. System Functions ... 137

B. SYSTEM FORMS .. 138

C. SYSTEM REPORTS .. 145

APPENDIX E - IMPLEMENTATION OF PROCESS LOGIC 149

A. STANDARD METHODS OF PROCESS LOGIC IMPLEMENTATION. 149

x

B. APPLICATION OBJECTS .. 152

1. APPLICATION TABLES AND FIELDS .. 152

2. APPLICATION QUERIES ... 152

3. APPLICATION REPORTS .. 153

4. APPLICATION FORMS: CONTROLS, PROCESSES, AND

PR OPER TIES ... 154

5. MACROS AND ARGUMENTS .. 160

6. APPLICATION ACCESS BASIC MODULES 164

APPENDIX F - DDE DOCUMENTATION ... 172

A. ACCESS BASIC LANGUAGE ELEMENTS FOR DDE 172

B. ADEPT FUINTIONS FOR DDE ... 173

C. ADEPT AND ACCESS APPLICATION INTERFACE PROCESSES 174

1. Adept Expert System Interface Node and Scripts 174

a. Interface N ode .. 174

b. Interface Node Scripts .. 175

C. Adept Display of Part Information .. 179

2. Database Application Procedures and Macros 179

LIST OF REFERENCES .. 183

BIBLIOG RA PH Y ... 184

INITIAL DISTRIBUTION LIST .. 185

xi

I. INTRODUCTION

A. BACKGROUND

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems

found aboard U. S. Oliver Hazard Perry class FFGs and some U. S. Coast Guard and

Australian vessels. Based on 1970's technology, the system requires a great deal of effort

to correctly identify components causing system faults. Shipboard technicians spend

valuable man hours and often replace good components, resulting in significant costs

and/or extended system down time. In addition, shipboard technicians may not have the

necessary expertise, and technical assist visits from shore-based technicians are often

required to get the system back into operation. (Smith, 1993, p. 1)

A maintenance advisor expert system is being developed to enhance fault diagnosis

and calibration of the MK92 MOD 2 FCS. Its purpose is to reduce the amount of time

and money spent on system diagnostics and to reduce overall system down time. More

significant, this expert system has the potential for reducing the dependence on shore-

based systems support, which is not likely to be available during at-sea operations or war

when it is critical for the MK92 FCS to be fully operational.

There are several potential uses of a database in conjunction with the expert system.

A database is required to manage information concerning replacement part information,

locations of identical parts within the system, and documentation references which are

part of the expert system conclusions or recommendations. Since this information is used

in more than one place within the expert system, storing it within a database will make it

more easy to modify than if it were hard wired within the expert system itself. A second

use of a database is to provide a supply support and inventory function to the technicians,

i I I II l ~IIil ,,

to facilitate procurement of parts when they are required. Another possible benefit of

using a database is using it to store and report usage/historical information, with respect

to the use of the expert system, for future analysis and planning.

B. PURPOSE/OBJECTIVES

The purpose of this thesis is to design and implement a prototype database system

which will work in conjunction with the MK92 FCS Maintenance Advisor Expert System

(MAES). This database will primarily act as a repository for detailed information on

replacement parts which will be available to the user, through the expert system. An easy

to use interface will be provided to the users which allows them to maintain database

information. In addition, the database will perform a supply support function for the

technicians.

C. RESEARCH QUESTIONS

The following are the research questions that this thesis is addressing:

1. Does the use of off-the-shelf databases with expert systems add to the

functionality of expert systems?

2. Does the use of databases with expert systems facilitate the maintenance

of the currently developed expert systems?

3. What is the viability of the integration of databases and expert systems in

the Windows environment?

D. SCOPE AND LIMITATIONS OF THESIS

This thesis defines, designs and implements primary functionality of a relational

database system for use in conjunction with the MK92 Fire Control System MAES.

Methods for integration of the database and expert system were explored and tested.

2

E. METHODOLOGY

This thesis uses the database life cycle and prototyping approach to develop the

database application. This methodology of software development combines formal

requirements and design techniques with one which utilizes a series of adaptive

prototypes to test feasibility and to use for evolutionary requirements analysis.

The initial design and prototype focuses on the requirements generated by the

interaction between the database and the expert system. When necessary, database

complexity was limited to keep communications between the database and expert system

as simple as possible.

F. THESIS ORGANIZATION

This thesis is organized in the following manner:

Chapter II describes the system requirements (Requirements Analysis Phase). Data

and process requirements are discussed and represented using an Entity-Relationship

(E-R) diagram and a leveled set of Data Flow Diagrams (DFD).

Chapter III covers how the requirements are converted into a database design

(Design Phase). Data and process design are discussed, including the design of menus,

forms, and reports.

Chapter IV discusses the implementation of the database (Implementation Phase).

In this phase, data and processes are discussed in terms of implementation within a

specific database software program. This chapter covers the construction of a Microsoft

AccessTM application from a generic design.

Chapter V discusses the integration of the database and expert system. Dynamic

data exchange (DDE) is the primary method covered, with other possible mechanisms

briefly discussed.

3

Chapter VI presents lessons learned from the system development and future work

requirements.

4

IL REQUIREMENTS ANALYSIS

Requirements analysis consists of determining two types of system requirements:

data requirements and process requirements. Determining data requirements specifies

what data needs to be stored in the system, while process requirements specify the

processes which operate on the data in order to provide the required database

functionality. In the requirements analysis phase of software design, initial design

requirements were obtained by analyzing the functionality of the expert system and

gathering the requirements and capabilities requested by the program manager, the Naval

Surface Warfare Center (NSWC), Port Hueneme Detachment (PHD).

Prior to beginning the database design, its requirements had been discussed by the

MK92 FCS MAES project team during several meetings, with the primary requirement

determined to be presenting the user particular amplifying information concerning the

expert system result nodes. NSWC PHD provided this information in the form of a list for

the calibration portion of the expert system. Data requirements were developed primarily

from this list and the knowledge representation diagrams.

In addition, discussion with NSWC personnel and the project advisors included

interest in the possibility of storing data concerning the usage of the expert system to

provide justification for the development of the system. Initial requirements were based

on the possible information this sort of system would store, along with likely input and

output processes, but the detailed design and the implementation of these requirements

will not be covered in this thesis. Follow-on work may contain this functionality if it

remains a system requirement.

Requirements for a supply function were based on personal experience with

technicians and their needs for quick information for ordering parts. This system will be

developed further based examination of the prototype by NSWC in follow-on work.

5

Some type of interface for maintenance is required of all databases. While much of

the maintenance is performed by an administrator, it may also be practical for data to be

maintained by the users, as well. If the users are required to maintain data, the design of a

database maintenance interface is considerably more important. This interface must

provide the capability to maintain the data items subject to change and at the same time

present the inadvertent corruption of the database, to the greatest extent possible.

A. DATA REQUIREMENTS

Data requirements may be stated in the form of an entity-relationship (E-R) model,

which consists of entities, attributes, and relationships. The entity-relationship (E-R)

diagram is used to visually describe the entities and the relationships between them, and is

provided in Appendix A, Section C. Data requirements are described below.

1. Entities and Attributes

a. General Description

The basic object in an E-R model is an entity, which is defined as

"something important to the users in the context of the system that is to be built"

(Kroenke, 1992, p. 98). Each entity has specific properties called attributes, which are

characteristics that describe it. Each instance of an entity is a unique occurrence of that

entity, which can be specified by a particular attribute or identifier.

b. Specific System Entities and Attributes

One of the primary entities for this system is the NODE, which is the

result node within the expert system requiring information on part replacement from the

database. Attributes of a NODE are a Node-number and a Module-reference, with Node-

number being the identifier, or unique attribute.

The second primary entity is REPLACEMENT. This entity describes a

particular part and its location within the system, which may be replaced by the technician

6

troubleshooting faults within the MK92 FCS. Attributes of a REPLACEMENT are a

Circuit-card-location-reference, Alternate-location, and Notes. The Circuit-card-location-

reference, commonly called the UD number within the system technical manuals as well as

the expert system, is the identifier for the Replacement entity.

The next primary entity is PART, which describes a particular electronic

part in the system, another item of interest to the technician. Attributes of PART are the

Part-number, Stock-number, Price, Part-allowance, Parts-on-hand, and Parts-on-Order.

Part-number is the identifier for the PART entity.

The fourth entity is NODE-REPL, which provides a link between the

NODE and the REPLACEMENT entities. The identi.er is a composite attibute

consisting of Part-number (from PART) and Circuit-card-location-reference (UD#) (from

REPLACEMENT). There is also one attribute, circuit-reference, which is the document

reference for a particular combination of NODE and REPLACEMENT identifiers.

The last entity is USAGE, which would store a record of the actual

usage of the expert system to allow management to analyze its effectiveness and perform

more accurate cost/benefit analysis. The initial definition of the attributes of USAGE are

the Usage-nu.ber. Usage-date, Part-replaced, and Usage-notes. Usage-number is the

identifier for the USAGE entity.

Other entities may be added to the system as development progresses.

Appendix A, Sections A-B contains a listing of all system entities, their attributes, and

their definitions.

2. Relationships

a General Description

The association between two entities is called a relationship. A rela-

tionship can be characterized on several dimensions. The first dimension is the degree of

7

the relationship. Most relationships involve only two entities and are called binary

relationships.

The second dimension is cardinality, which specifies how many instances

of each entity may be associated with the other entity in the relationship. There are three

main types of binary relationships, 1:1 (one-to-one), 1:N (one-to-many), and N:M (many-

to-many).
A third dimension is participation. The participation constraint tells

whether the relationship between one entity and another is required (mandatory) or not

required (optional). If every member of an entity set must be related to another entity,

then the participation constraint is mandatory, or total. If members of an entity can exist

without being related to another entity, then the participation constraint is optional, or

partial. (Emisari and Navathe, pp. 50-5 1)

b. Specific System Relationships

The relationship between the NODE entity and the REPLACEMENT

entity is a N:M relationship, that is, a NODE may use more than one REPLACEMENT

and likewise, a REPLACEMENT may be used by more than one NODE. This

relationship contains the attribute circuit-reference, as the documentation reference is

associated with neither Node nor Replacement, but the combination of the two. Since this

relationship cannot be implemented directly, it has instead, been broken into two 1 :N

relationships, as discussed below.

The relationship between the NODE entity and the NODE-REPL entity

is a 1 :N relationship, that is, a NODE instance may be associated with more than one

instance of NODE-REPL, but each instance of NODE-REPL may be associated with only

one instance of NODE. Similarly, the relationship between REPLACEMENT entity and

the NODE-REPL entity is a I :N relationship. A REPLACEMENT instance may be

8

associated with several instances of NODE-REPL, but each instance of NODE-REPL may

be associated with only one instance of NODE. The participation constraints are such that

there is a mandatory requirement for each NODE-REPL instance to be associated with a

NODE and a REPLACEMENT instance. On the other hand, NODE and

REPLACEMENT instances can exist without an associated NODE-REPL instance,

therefore those constraints are optional.

The relationship between the PART entity and the REPLACEMENT

entity is a I:N relationship, since a PART instance may be associated with more than one

REPLACEMENT instance, but each REPLACEMENT instance is associated with only

one PART instance. The participation constraint is optional both ways, that is a

REPLACEMENT instance may have a related PART instance and a PART instance may

exist without being related to a REPLACEMENT instance.

B. PROCESS REQUIREMENTS

Process requirements are the second component of the overall system requirement.

Processes can be modeled in terms of how the data flows through the system and the

processing that is performed on the data. Data flow models are used to depict the

processes and how they interact with one another, and how the data flows between

processes. (Whitten, et. al., 1989, p.275)

Process modeling begins with factoring a system into subsystems and functions,

using a top-down functional decomposition diagram. Logical data flow diagrams (DFDs)

are then constructed, corresponding to each level in the decomposition diagram. Middle

level DFDs show details about key subsystems, and the primitive level diagrams show

explicit data flows and processes for a single functional piece of the system. (Whitten, et.

al., 1989, pp. 284-321)

9

1. Process Decomposition

The decomposition of the process requirements for this system is shown in the

decomposition diagrams provided in Appendix B. This system is broken into three main

subsystems: the Part Information scbsystem, the Data Store Maintenance subsystem,

and the System Usage subsystem (Figure B-1).

These subsystems have been further broken down into subprocesses, which

are activities corresponding to various system transactions, data maintenance functions,

and reports. Further decomposition is shown in Figures B-2 through B4. There is a

fourth component of the database, which is associated with the interface between the

database and the expert system. This component is discussed in detail in Chapter V.

2. System Data Flow Diagrams (DFDs)

Logical data flow diagrams (DFDs) are used to show detailed processing and

associated data flows. Higher level DFDs correspond to the higher levels in the

decomposition diagram, and give a more general illustration of what the subsystems do.

The lower level DFDs show the detailed processing requirements of the primitive level

flnctions. (Whitten, et. al., 1989, p. 289)

There are three main components of a data flow diagram: the external entities

to the system, the logical data flows, and the logical processes. The external entities

define the system boundaries, are the agents with which the system interacts, and include

the end-users of the system. These end-users may be either sources of data or recipients

of system information, or both. (Whitten, et. al., 1989, pp. 277-8)

In this system, the two major entities are 1) the Technician (or Expert System

User), and 2) the System Administrator (System Admin). Two separate entities are used

because, while the majority of the system processes are of possible use to both entities,

there are separate processes which are designed for use by personnel maintaining the

10

expert system and/or the database system (system administration). Changes to the expert

system may require related changes to the database, where the user may be required to

perform some simple database maintenance tasks if information in the data stores changes.

A simplified interface is provided for the primary end-user (technician).

a. Coante/ Diagram

The highest level DFD is the context diagram. This diagram "defines

the scope and boundary for the system and project, (Whitten, et. al., 1989, p. 289)" and in

this case is shown in Figure B-5. In this diagram, the only process shown is the root

process. In addition, this diagram shows the external entities and the major data flows.

Since details are not shown, the flows in this diagram represent a collection (or

consolidation) of flows between the system and the entities.

System maintenance information flows from the System Administrator

to the system, and parts information flows from the system to the System Administrator.

User information (including maintenance information) flows from the Technician to the

system and parts/supply information flows from the system to the Technician.

b. System Diagram

(1) General Description. The system diagram is an explosion of the

context diagram into a more detailed picture of the system, and is the second level DFD.

This diagram shows the major subsystems and how they interact with one another. This

system diagram is shown in Figure r-6, and shows the three primary subsystems (1. 0 Part

Info, 2.0 Data Store Maintenance, 3.0 System Usage) which are the second level of the

decomposition diagram. In addition to showing data flows between the systems and the

external entities, this and lower level DFDs also show communications between the

processes and the data stores. Multiple data stores and entities of the same name are used

only to keep the diagram readable; symbols using the same name represent the same entity

11

or data store. In some cases, a single *data model" is used to represent all systems data

stores for simplification. (Whitten, et. al., 1989, pp. 291-294)

In a few instances, the data flows shown on this diagram still

represent composite flows, which are exploded further in lower level diagrams. In

addition, most communication between the system and the user is two-way, yet may be

oiiy shown in one direction. To simplify DFDs, only the net data flow is shown; for

example, in an inquiry, the result is shown but not the request.

(2) Subsystem Descriptions. The Part Info Subsystem receives part

supply input and provides (local) part information to the Technician and provides

(system) part information to the System Administrator.' This subsystem uses the Part and

the Replacement data stores.

The Data Store Maintenance Subsystem receives (system)

maintenance information from the System Administrator and Oocal) maintenance

information from the Technician. This subsystem maintains the Replacement, Node, Part,

and Node-Repl data stores.

The System Usage Subsystem receives usage information from

and provides usage reports to the Technician. This data is stored in the Usage data store.

C. Middle Level and Pr'midve Level DFDs

(1) General Description. Each of the processes on the systems

diagram is further exploded to show more of the subsystem details. In the case of this

system there is only one level DFD between the system level DFD and the lowest or

primitive level DFD. Each diagram will show progressively more detail concerning flows

1The term "local" is used with respect to the data flows to generally denote

information going between processes and the Technician entity, and the term "system" is
likewise used to denote information between processes and the System Admin entity.

12

until reaching the primitive level. At the primitive level, all data flows are shown and

composite flows are broken down into their individual components. The letter P is added

to the identification number for primitive processes to show that this process does not

explode to another DFD.

(2) Parts Information Subsystem. The Parts Information Subsystem

is exploded from the systems diagram into two levels (Figures B-7 and B-8). There are

three processes in the first level, two of which are primitive level processes. These

correspond to the decomposition diagram for this subsystem.

(a) Browse Part Info process (1.1P). This allows the

technician to look at part information for a particular part. Part Supply Details are

retrieved from the Part data store, and then provided to the Technician, by selecting a

particular part-number.

(b) Update Supply Status process (1.2P). This allows the

technician to change supply status information for a particular part. Changes are provided

to the p~.ocess, which then updates details in the Part data store.

(c) Report Part Info process (1.3). This allows the technician

and system administrator to retrieve Part Reports and System Part Reports, respectively.

This process uses details from the Part and Replacement data stores. This process is

broken down into the following primitive processes (Figure 8):

(i) Not On Hand Report process (1.3.1P). This

provides a report to the Technician, of parts which are not in stock, using the part-number

element from the Part data store and the circuit-card-location-ref (UD#) element from the

Replacement data store. This report provides all UD#s which are related to a particular

part.

13

(ii) Parts On Order Report process (1.3.2P). This

provides a Parts On Order Report to the Technician, using the part-number, and the parts-

on-order element from the Part data store, and the circuit-card-location-ref (UD#) element

from the Replacement data store.

(iii) Parts Under Stock Report process (1.3.3P). This

provides a list of all parts which are under allowance level to the Technician, using details

from the Part data store.

(iv) System Parts List process (1.3.4P). This provides

a list of all parts in the system to the System Administrator, using the part-number element

from the Part data store, and the circuit-card-location-ref (UD#) element from the

Replacement data store. All UD#s corresponding to a particular part are listed.

(3) Data Store Maintenance Subsystem. The Data Store Maintenance

Subsystem is exploded frow the systems diagram into two levels (Figures 9-13). There

are three processes in the first level (Figure 9), which all explode into lower level

processes.

(a) Node Maintenance process (2.1). This allows the System

Administrator and the Technician to perform maintenance on the Node data store, as well

as related data stores (Replacement and Node-Repl), by selecting a particular Node#.

This process explodes into the following primitive processes (Figure B-10):

(i) Update Node/UD Info by Node process (2.1. IP).

This process allows the System Administrator and Technician to select a particular node

and update all elements in the Node, Node-Repl, and Replacement data stores except

node-number.

14

(ii) Change Node# process (2.1.2P). This process

allows the System Administrator to change the Node number of a particular node. Node-

number from both the Node and the Node-RepI data stores are changed.

(iii) Add Node process (2.1.3P). This process allows

the System Administrator to add a new node to the system. Other related information,

such as associated UD#s, pertaining to new nodes must be added by other processes.

(iv) Delete Node process (2.1.4P). This process allows

the System Administrator to delete a node from the system, using node-number to delete

the related instances in the Node and Node-Repl data stores.

(v) Add UD to Node (By Noue) process (2.1.5P). This

process allows the System Administrator and Technician to add UD#s related to a

particular node-number by adding Node-kepI data store instances to -.he system. This

process checks to see if the UD# exists. If it does not, a message will request the user to

add the UD# before creating an instance in the Node-Repl data store.

(vi) Delete UD from Node (By Node) process (2.1.6P).

This process allows the System Administrator and Technician to delete UD#s related to a

particular node-number by deleting instances in the Node-RepI data store from the system.

(b) Replacement (UD) Maintenance process (2.2). This

process allows the System Administrator and Technician to perform maintenance on the

Replacement data store, and related data stores (Part and Node-Repl), by selecting a

particular LUD#. This process explodes into the following primitive processes (Figure

B-l1):

(i) Change Replacement Info By UD# process

(2.2.11P). This process allows the System Administrator and the Technician to change

information related to a particular circuit-card-location-ref (UD#) in the Replacement and

15

Part data stores. If part-number is changed, the corresponding Part data store instance

will also have its part-number attribute changed.

(ii) Change UD# process (2.2.2P). This process allows

the System Administrator and the Technician to change circuit-card-location-ref (UD#)

for a particular instance in the Replacement data store and related instances in the Node-

RepI data stores.

(iii) Add UD to Nodes (By UD) process (2.2.3P). This

process would allow the System Administrator to add Replacement data store and corre-

sponding Node-Repl data store instances for a single UD#. This would be an alternative

to adding a UD# to a number of nodes one node at a time. For Replacement data store

instances not related to an existing Part-number, a new instance in the Part data store

would be created.

(iv) Delete UD from Nodes (By UD) process (2.2.4P).

This process is similar to that of 2.2.3P, but deletes rather than adds UD#s related to

Nodes. This is accomplished by deleting Node-RepI instances.

(c) Part Maintenance process (2.3). This process allows the

System Administrator and Technician to perform maintenance on the Part data store, and

related data stores (Replacement and Node-Repl), by selecting a particular Part#. This

process explodes into the following primitive level processes (Figure B-12):

(i) Change Part Info process (2.3. IP). This process

allows the System Administrator and Technician to change information relating to a

particular part in the Part data store, by part-number.

(Ci) Change Part# process (2.3.2P). This process

allows the System Administrator and Technician to change the part-number of a particular

part, changing related part-numbers in both the Part and Replacement data stores.

16

(iii) Delete Parts & UDs process (2.3.3P). This process

allows the System Administrator to delete Part instances from the Part data store.

However it checks to see if corresponding instances with the same part-number exist in

the Replacement data store. If they do exist, the user will be asked to delete related

Replacement instances first.

(iv) Add Parts process (2.3.4P). This process allows

the System Administrator and Technician to add instances to the Part data store.

(4) System Usage Subsystem. The System Usage Subsystem is

exploded from the systems diagram into two levels (Figures B-13 and B-14). There are

two processes in the first level, one of which is a primitive level process.

(a) Enter Usage process (3. IP). This process allows the

Technician to enter system usage data. The identifier attribute will be a usage-number,

which will document consecutive entries. Other items of interest will be usage-date, part-

replaced (Part#), and notes (UD#, etc.). These attributes are stored in the Usage data

store.

(b) Report Usage Data process (3.2). This process explodes

into the following primitive level processes (Figure B-14):

(i) Report Usage process (3.2. IP). This process will

retrieve usage details from the Usage data store in a formatted report.

(ii) Annual Report process (3.2.2P). This process will

retrieve usage details for the current year from the Usage data store, in a formatted report,

and (as required) archive data to clear the Usage data store.

17

C. OUTPUT OF REQUIREMENTS ANALYSIS PHASE

The statement of requirements is the output of the requirements phase. This

statement includes the description of the data and process requirements, the entity-

relationship diagram, and a leveled set of data flow diagrams. The next chapter discusses

the next stage of database development, the design phase.

18

I1. DATABASE SYSTEM DESIGN

The design phase consists of two parts, data design and process design. In data

design, also known as logical database design, data requirements specified in the

requirements phase are converted into a relational design which may be implemented later

in any specific database software. In process design, also known as application design,

update, display, and control mechanisms such as forms, menus, and reports, for the

application are developed.

A. DATA DESIGN

1. General Procedures

During data design, entities, and the relationships between entities, are

described in terms of relational database designs using the relational model. This is

accomplished by first defining a relation for each entity. These relations have the same

name as the entity and the attributes of the relation are the properties of the entity. The

key attribute is the same as the identifier (or unique) property of an entity. (Kroenke,

1992, p. 206)

After initial data design, relations are checked to ensure they are free from

modification anonLrlies. If not, normalization is used to eliminate these anomalies which

might result in an improperly designed database. It should be noted, however, that

normalization often adds additional relations by breaking entities into smaller units. The

best database design is a combination of minimizing modification anomalies while at the

same time preventing the design from becoming too contrived or complex. (Kroenke,

1992, pp. 207-208)

Once a relation is constructed for each entity, with all of the entiWs

properties, the different kinds of relationships in the E-R model are also represented. The

representation of one-to-one (1:1) and one-to-many (1 :N) relationships is straightforward.

19

Each entity is represented as a relation and then the key attribute of one of the relations is

also stored in the other. In the case of the 1 :N relationship, the key attribute of the parent

(on the "one" side) is stored in the relation representing the child (on the "many" side).

The key attribute stored in the relation, whether 1: 1 or I'N, is called the foreign key since

it technically does not belong to that relation. (Kroenke, 1992, pp. 211-214)

To represent many-to-many relationships a new relation is created, called an

intersection relation. This intersection relation represents the relationship itself and the

key is the combination of the keys of both of its parent relations. (Kroenke, 1992, p.215-

217)

2. Specific Database Systems Relations

The entity-relationship diagram shown in Figure A-1, Appendix A is

converted into a relational model using the principles described above. This model is

shown in Figure 1, below. This system is primarily designed with the expert system

interface in mind, so all relations and attributes have been designed to simplify the

resulting output. The tranformation of the entities in this system are described in detail

below.

The NODE entity is represented as the relation NODL, with the attributes of

Node# and Module Ref The key attribute is Node#.

The REPLACEMENT entity is represented as the relation

REPLACEMENT, with the arutes UD#, Alt Loc, and Notes. UD# is the key

attribute. This relation is the child of the PART relation, therefore the attribute Part# is

also included in the REPLACEMENT relation as a foreign key.

The PART entity is represented as the relation PART, with the attributes

Part#, NSN, Price, Allowance, Parts On Hand, and Parts on Order. Past# is the key

attrmute of this relation.

20

The NODE-REPL entity is represented as the relation NODE-REPL with

the atbimutes Node#, UD#, and Circuit Ref The combination of Node# and UD# is the

key attribute of this relation. This relation is an intersection relation between the two

parent relations, NODE and REPLACEMENT.

For this thesis, the USAGE entity is not represented in the relational model, as

discussed in Chapter II.

NODE

rTWlnaf Module Ref

NODE-REP

I = ICkt Ref

REPLACEMENT

= IPart# f Aft Loc Notes

PART

EAU, I NSN Price Allowance Parts On Hand Parts On Order

Figure 1- Relation Diagram

21

B. PROCESS DESIGN

Process design involves the design of menus, screens, forms, reports and the logic

associated with these items. In most databases, the primary concern is the output

reauirements.

1. Menu Design

a General Design Strat

There are a number of common strategies for user interface design. The

most popular is the use of menu selections where various options are presented to the end-

user. The user then can easily selects an appropriate action from those presented on the

menu. In some cases, the menuing technique is driven by the database software being

used, because the mechanisms for one or the other type are more easily implemented. One

common technique available in current database software is the use of pull-down menus,

where the user highlights the chosen action using arrow keys, a mouse, or initial letters of

the action. If submenus exist, they descend from the pull-down menu choice, presenting

more choices to the user. This allows the user to traverse through a hierarchical structure,

selecting one of a collection of functions. (Whitten, et. al., 1989, p.585)

Many Windows-based database software programs take an object-

oriented design approach, where command buttons invoke macros which perform certain

tasks. With event-driven programs, instead of presenting the user a strict hierarchical

structure, it may be possible to provide more convenient and natural ways for users to do

things. (Jones, 1994, pp. 31-32)

b. SpecvWi Design

This system menu is primarily hierarchical, but some functions will be

combined where it makes sense, and will not be presented exactly as found in the

decomposition diagrams. The menu hierarchy is provided in Appendix C, Section A. All

22

functions and menu selections are provided via command buttons, which allow the user to

either select a button using the Windows pointing device (mouse or trackball) or by typing

in the highlighted letter (underlined) on the "button". In addition to the selections shown

in the menu hierarchy listing, each menu level contains one or more buttons which return

the user to the previous menu and/or the main menu (as appropriate). The menus are

discussed in detail below.

There are two subsystems, one for administrators and one for users

(technicians). The User menu is separated from the Administrator menu, even though

many of the functions are the same, so that Database Administrators can have access to a

more complete set of data maintenance functions than Users would require. The first

menu screen presented to Administrators is the Opening screen, which is shown in Figure

C-i, Appendix C. Database administrators (DBAs) have the option of accessing either the

User or Administrator version of the system.

(1) User Menu. The main User Menu screen allows the user to select

from four command button choices, three which invoke submenus (the Part Information

submenu, the Usage History submenu, and the DB Maintenance submenu), and one to exit

the system. (Figure C-2) This is the first menu screen presented to users accessing the

system

(a) Part Information Submenu. The Part Information submenu

presents four choices to the user: two which invoke part information functions (Browse

Part Supply Info and Update Part Supply Status), one which invokes the Part Reports

Submenu, and one which returns the user to the main (User) menu. (Figure C-3)

23

(i) Browse Part Supply Information. This function

allows the user to browse supply information concerning a specific part selected from a list

of parts. This provides a basic display mechanism for the PART entity. Screens used for

this display are discussed in Section 2, below.

(Hi) Update Part Supply Information. This fimction

provides the capability for the user to update the supply information for a specific part.

This provides the update mechanism for the PART entity. Forms used for this function

are discussed in Section 2, below.

(iii) Part Reports Submenu. The Part Reports submenu

presents five choices to the user: three which generate reports for the user, one which

returns the user to the Previous menu (Part Information), and one which returns the user

to the main menu (User). (Figure C4) Reports are discussed in detail in Section 3,

below.

{A) Parts Not On Hand Report. This option

generates a report on parts which are not on hand.

(B) Parts On Order Report. This option generates

a report on parts which are on order.

(C) Parts Under Stock Report. This option

generates a report on parts which are under allowance leve.

(D) Previous Menu. This option returns the user

to the previous menu screen (Parts Information).

{E) Return to Main User Menu. This option

returns the user to the top level user menu.

(iv) Return to Main User Menu. When selected, this

option returns the user to the top level user (Main - User) menu.

24

(b) Usage Submenu. The Usage submenu presents four

choices to the user- one to enter usage information, two for generating reports, and one to

return to the main (User) menu. (Figure C-5) As discussed in Chapter 1I, this submenu is

not implemented in this thesis.

(c) DB Maintenance Submenu. This submenu presents four

choices to the user: one to update circuit card information, one to add UD#s to/delete

UD#s from Nodes, one to update Part Information, and one to return to the main (User)

menu. (Figure C-6)

(i) Update Circuit Card Information. This option

allows the user to update the NODE, NODE-REPL, and REPLACEMENT entities. The

function provides a submenu to the user, allowing selection between updating by Node#

or by UD#. This menu screen is shown in Figure C-7.

{A) Update By Node#. This option allows the

user to update the NODE, NODE-REPL and/or REPLACEMENT entities for the

information related to a particular Node#. Screens used for these updates are discussed in

Section 2, below.

(B) Update By UD#. This option allows the

user to update the REPLACEMENT and NODE-REPL entities for the information related

to a particular UD#. Screens used for these updates are discussed in Section 2, below.

(ii) Add UDs to/Delete Nodes from Nodes. This option

allows the user to update the NODE and NODE-REPL entities. This function is not

inplanented.

(iii) Update Part Information. This option allows the

user to update the PART and REPLACEMENT entities. This function is not

implemented.

25

(tv) Return to Main User Menu. When selected, this

function returns the user to the top level user menu.

(d) Exit. The Exit finction closes the database application

after saving any changes.

(2) Administrator (Admin) Menu. The main Admin menu allows the

same three submenu choices as the User menu (Part Information. Usage Eistory, and DB

Maintenance), plus Exit. This menu will be used by the DBA, and is shown in Figure C-8.

(a) Part Information Submenu. This menu presents the same

choices as in the User Subsystem, which is discussed above, and is shown in Figure C-9.

(i) Browse Part Supply Information. This is the same

function as in the User Subsystem, and it uses the same screens.

('d) Update Part Supply Information. This is the same

function as in the User Subsystem, and it uses the same screens.

(ii) Part Reports Submenu. The Part Reports submenu

in this subsystem presents three choices to the DBA: one which generates a report for the

DBA, one which returns the DBA to the Previous menu (Part Information - Admin), and

one which returns the DBA to the main menu (Admin). The report is discussed in detail in

Section 3, below. (Figure C-10)

(A) System Parts List. This option generates a

listing of all parts in the expert system, for use by the DBA.

{B) Previous Menu. This option returns the user

to the previous menu screen (Parts Information - Admin).

(C) Return to Main Admin Menu. When

selected, this option returns the DBA to the top level Admin menu.

26

(iv) Return to Main Admin Menu. When selected, this

option returns the DBA to the top level Admin menu.

(b) Usage Submenu. This submenu is not covered in this

thesis.

(c) DB Maintenance Submenu. This submenu provides the

same maintenance functions as in the User Subsystem, plus an additional function to

maintain the NODE entity (and related entities) within the system. (Figure C- 11)

(i) Update Circuit Card Information. This option

provides enhanced capabilities to the DBA for maintenance of the NODE, NODE-REPL,

and REPLACEMENT entities, in addition to those provided to the user. The function

provides a submenu to the user, allowing an update by either Node# or by UD#. This

menu screen is shown in Figure C-12.

(A) Update by Node#. This option provides the

same basic capabilities as that of the user menu plus it allows the DBA to change Node#

within the NODE and related NODE-REPL entities. Screens used by this function are

discussed in Section 2, below.

(B) Update by UD#. This option provides the

same capabilities as that on the User menu to update the NODE, NODE-REPL, and

NODE-REPL entities.

(ii) Add UDs to/Delete UDs from Nodes. This option is

the same as on the User menu.

(iii) Update Part Information. This option is the same as

on the User menu.

27

(iv) Add Nodes to/ Delete Nodes from System. This

option allows the DBA to add instances to the NODE entity or delete instances from the

NODE entity. This fimction would be used in the case of a adding, deleting, or modifying

nodes in the expert system.

(v) Return to Main Admin Menu. When selected, this

option returns the DBA to the top level Admin menu.

(d) Exit. This option returns the DBA to the Opening menu,

instead of exiting the program.

2. General Form/Screen Use and Design

Forms are used for both data entry and display of information. Since this

database does not model any existing paper forms, as is the case with many database

systems, forms were designed from scratch with simplicity and consistency in mind. Some

forms were designed with a form generator while others were put together using other

design tools. The form generator and form design tools will be discussed in more detail in

Chapter IV.

Forms can be designed based on either entities or a combination of entities.

There are two types of forms in this database application, forms based on a single table,

and forms based on more than one table. Multi-table forms can be used to display entities

with 1:1 relationships, or entities with I :N relationships. Some forms are based on a table

and some forms are based tn the results of a query. Examples of these forms are

discussed below.

As with menus, command buttons can be used on forms to execute additional

functions or tasks. Procedures or tasks executed in this way allow one or more tasks to

be grouped together in a single cohesive presentation, with different options available to

the user at his or her selection. Other tasks included in forms are updates to related

28

information, viewing related information, and cancellation of changes. The application

forms will be discussed below, along with functions and procedures. Specific form design

is discussed in Section 4, below.

3. Process Logic

Process logic describes the logic of the different modules of the system. There

are two types of process modules used in the system: procedures and functions. Both

procedures and 5inctions are designed with software reuse in mind, that is, in many cases

functions and prc• •., -es contain actions which may be used by more than one process.

Examples of actions which may by either functions or procedures, or both,

include: present a form to a user, read input, search for a particular instance or set of

instances of an entity or entities, display instances to the user, cancel actions, update

entities, delete entities, and others.

Process logic is discussed with respect to specific system forms and reports,

and is presented in detail in Appendix D, Section A.

4. Specific System Forms and Associated Logic

a. User Forms.

(1) Browse Part Supply Information. When invoked from the Part

Information submenu, this function involves the use of a set of two forms.

The input form (Browse Part) is shown in Figure D- 1,

Appendix D. This form is based on a query of the PART entity, which is invoked by the

user selecting a Part# from a scroll list of all the system part numbers. Information about

that part is displayed by selecting or "pushing" the Locate command button. A Cancel

function button is also available. When a Part# and the Locate button are selected, the

associated procedure (see Appendix D, section A, Ul. IL) is executed. The Cancel

29

button executes procedure U1. IC, returning the user to the previous screen, Part

Information Menu.

The output form (Part Supply Info Browse) is based on the same

query and presents the results of the procedure (Figure D-2). This form has one command

button, Return, which takes the user back to the previous (input) screen using procedure

Ul.IL-R.

(2) Update Part Supply Status. When invoked from the Part

Information submenu, this procedure (U1.2,) involves the use of a set of two primary

forms and three secondary forms.

The input form (Update Part) is shown in Figure D-3. This form

requires input from the user in the form of Part#. By selecting the Locate command

button, the user invokes a process (Procedure U1.2L) which locates a particular instance

of the PART entity and displays it to the user. If there is no matching part, a message is

provided to the user. A Cancel function button is also available, which executes

procedure U1.2C, returning the user to the previous menu form (Part Information Menu).

The output form (Part Supply Info) is based on the PART entity

and presents the results of the procedure (Figure D-4). This form has five command

buttons: Return, which returns the user back to the Part Information menu using

procedure U1.2L-R, More, which saves the existing information, including any updates,

and takes the user back to the previous (input) screen using procedure U1.2L-M; Issue,

which invokes the process which displays the Issue Parts form (Ul.2L-1); Order, which

invokes the process which displays the Parts Ordered form (U1.2L-O); and Receive,

which invokes the process which displays the Parts Received form (Ul.2L-R).

30

One secondary form associated with this procedure, Issue Parts, is

shown in Figure D-5. This form requires the user to input the amount of parts issued.

The user may either Cancel this action (Ul.2L-IC), or Update the number of parts on

hand (Ul.2L-IU), and then return to the previous form (Part Supply Info).

The next secondary form, Parts Ordered, is shown in Figure D-6.

This form requires the user to input the amount of parts ordered. The user may either

Cancel this action (Ul.2L-OC), or Update the number of parts on order (Ul.2L-OU),

and return to the previous form (Part Supply Info).

The third secondary form, Parts Received, is shown in Figure D-7.

This form requires the user to input the amount of parts received. The user may either

Cancel this action (Ul.2L-RC), or Update the number of parts on order and parts on

hand (UI.2L-RU), and return to the previous form (Part Supply Info).

(3) Update Circuit Card Information (By Node#). When invoked

from the Part Information submenu using the Select Change submenu, this function

involves the use of a set of two forms and two subforms.

The input form (Input Node#) is shown in Figure D-8. This form

requires the users to input a Node#. By selecting the Locate command button, the user

invokes a process (Procedure U2. 1. IL) which locates a particular NODE instance, if it

exists, and displays that NODE and its related NODE-REPL and REPLACEMENT

information. If there is no matching NODE instance, a message is provided to the user. A

Cancel function button is also available, which executes procedure U2. 1. 1C.

The output form (Update Node-Replacement - User) is based on

the NODE entity and is displayed in Figure D-9. A subform appears within this form,

which displays the related NODE-REPLACEMENT entity information. Also a sub(sub)

form within the subform displays the REPLACEMENT entity information. In this

31

manner, it is possible to display a NODE and a REPLACEMENT instances associated

with that Node#, by using instances in the NODE-REPL entity to link these two other

entities. This form has three command buttons: Clear, which clears any changes, before

they are committed using procedure U2. 1. 1L-C; Exit, which returns the user back to

Select Change menu using procedure U2. 1. 1L-E; More, which saves the existing

information, including any updates, and takes the user back to the previous (input) screen

using procedure U2. 1. 1L-M. The subform has two command buttons: Fwd, which

displays the next NODE-REPL instance associated with that Node# using procedure

U2. 1. iL-F; and Back (Procedure U2. 1. iL-B), which displays the previous instance of

NODE-REPL associated with that Node#.

(4) Update Circuit Card Information (By UD#). When invoked from

the Part Information submenu using the Select Change submenu, this function involves the

use of a set of two forms. This function also permits another function to be invoked,

Update UD#, using a third form.

The input form (Input UD#) is shown in Figure D- 10. This form

requires the user to input a UD#. By selecting the Locate command button, the user

invokes a process (Procedure U2.2. IL) which locates a matching UD# in the system, if it

exists, and displays that particular Replacement instance to the user. If there is no

matching Replacement instance, a message is provided to the user. A Cancel function

button is also available, which executes procedure U2.2. IC.

The output form (Update UD# - Replacement) is shown in Figure

D-11, and is based on the REPLACEMENT entity. This form has four command buttons:

Update UD#, which invokes the process U2.2. iL-U, and is discussed in more detail

below-, aear, which clears any changes made, before any updates are made, using

procedure U2.2. iL-C; Exit, which returns the user back to the Select Change menu using

32

procedure U2.2. IL-E; More, which saves the existing information, including any updates,

and takes the user back to the previous (input) screen using procedure U2.2. IL-M.

The Update UD# process invokes the third form, Change UD#

(Figure D-12). The subform has two command buttons: Cancel, which cancels the

Update UD# process using process U2.2. iL-UC; and Change UD#, which invokes a

process (U2.2. IL-UD) which accepts a new UD# and presents a message giving the user

an opportumity to confirm the change by selecting Yes or No. If the user selects "No" the

process is cancelled and he/she is returned to the Change UD# form. If the user selects

"Yes%, this activates the function "Update Related UD* (Appendix D, Section A-3). This

fimction first finds all of the instances of the REPLACEMENT entity with the old UD#

and updates them with the new UD#, then it finds all related (with the same UD# as the

old UD#) instances of the NODE-REPL entity and updates them with the new UD#.

Upon completion of this function, the user is returned to the Update UD# - Replacement

form.

b. Administrator (Admin) Forms

(1) Common User and Admin Forms. Most of the Admin Forms are

the same as the User forms and perform the same function. The primary differexne in the

processes invoking the forms or processes attached to command buttons is the menu

screens from which the user starts or to which the user returns to after the completion of

the process(es). Process logic is contained in Appendix D, Section A-2.

(2) Unique Admin Form: Update Circuit Information (By Node#)

When invoked from the Part Information submenu using the Select Change submenu, this

function involves the use of a set of three forms and two subforms.

33

The primary input form (Input Node#) is shown in Figure D-8,

and is the same as the User form of the same name. This form requires the user to input a

Node# By selecting the Locate command button, the user invokes a process (Procedure

A2.1.lL) which locates a particular Node# in the NODE entity, if it exists, and displays

that NODE and its related NODE-REPL and REPLACEMENT instances information. If

there is no matching NODE instance, a message is provided to the user. A Cancel

function button is also available, which executes procedure A2. 1. IC.

The output form (Update Node-Replacement - Admin) is based

on the NODE entity and is displayed in Figure D-13. A subform within this form, displays

related NODE-REPL entity information. A sub(sub) form within the subform is used to

display related REPLACEMENT entity information. In this manner, it is possible to

display a NODE and all REPLACEMENT instances associated with that Node#, by using

instances in the NODE-REPL entity to link these two entities. This form has four

command buttons: Clear, which clears any changes made, before they are committed,

using procedure A2.1.1L-C; Exit, which returns the user back to Select Change menu

using procedure A2. 1.1L-E; More, which saves the existing information, including any

updates, and takes the user back to the previous (input) screen using procedure A2. 1. IL-

M- and Update Node#, which invokes procedure A2. 1. IL-N, that changes the current

Node# to another one as specified by the user. This last process is discussed in more

detail below. The subform has two command buttons: Fwd, which displays the next

NODE-REPL instance associated with that Node# using procedure A2. 1. iL-F; and Back

(Procedure A2. 1. IL-B), which displays the previous instance of NODE-REPL associated

with that Node#.

The Update Node# process (A2. 1. iL-N) invokes the third form,

Change Node# (Figure D-14). This form has two command buttons: Cancel, which

34

cancels the Update Node# process using process A2.2. IL-NC; and Change Node#, which

invokes a process (A2.2. IL-NA) which accepts a new Node# and presents a message

giving the user an opportunity to confirm the change by selecting Yes or No. If the user

selects "No" the process is cancelled and the user is returned to the Change Node# form.

If the user selects "Yes", this activates the function "Update Related Node" (Appendix D,

Section A-3). First, this function finds all of the instances of the NODE entity with the old

Node# and updates them with the new Node#, then it finds all related (with the same

Node# as the old Node#) instances of the NODE-REPL entity and updates them with the

new Node#. Upon completion of this process, the user is returned to the Update Node-

Replacement -Admin form.

5. Report Design and System Reports

There are currently four reports in this system, three for the User Subsystem,

and one for the Administrator (Admin) Subsystem. Examples of these reports are

provided in Appendix D, Section C, and are discussed below. Process logic for the

processes involved in these reports is detailed in Appendix D, Section A.

a User Rft

(1) Parts Not On Hand Report. This report is invoked from the

Report Parts Info Menu - User, using the Report Parts Not On Hand procedure (U1.3.1).

A sample report is shown in Figure D-15. This report is based on the results of a search

for all instances of the PART entity, where the number of Parts On Hand equals zero. A

list of the Part#s for instances matching the search criteria is then used to obtain a sub-

listing of all UD#s related to the resultant Part#s from the REPLACEMENT entitiy. Part#

and all associated UD#s, for parts which are not in stock, are reported to the user.

35

(2) Parts On Order Report. This report is invoked from the Report

Part Info Menu - User, using the Report Parts On Order procedure (Ul.3.2), and is shown

in Figure D-16. This report is based on the results of a search for all instances of the

PART entity, such that the number of Parts On Order is greater than zero. A list of the

Part#s for instances matching the search criteria is then used to obtain a sub-isting of all

UD#s related to the resultant Part#s from the REPLACEMENT entity. Part#, Number of

Parts On Order, and all associated UD#s, for parts which are on order, are reported to the

user.

(3) Parts Under Stock Report. This report is invoked from the

Report Parts Info Menu - User, using the Report Parts Under Stock procedure (Ul.3.3).

A sample of the report is shown in Figure D-17. This report is based on the results of a

search for all instances of the PART entity, such that the number of Parts On Hand is less

than the parts Allowance. A list of the Part#s for instances matching the search criteria is

displayed along with Number Parts On Hand, Number Parts On Order, and the Part

Allowance.

b. Adnin Reports

There is currently one Admin report, which is invoked from the Report

Parts Info Menu - Admin, using the System Parts List procedure (A1.3.1). Part of this

listing is shown in Figure D-18. This report is based on the results of a search for all

instances of the PART entity which had a Part#. A list of the Part#s for instances

matching the search criteria is then used to obtain a sub-listing of all UD#s related to the

resultant Part#s from the REPLACEMENT entity. Part# and all associated UD#s for

parts in the system are reported to the administrator.

36

C OUTPUT OF DESIGN PHASE

The output of the design phase is a document that describes the structure of the

database. This structure of the database includes a description of the relations, their

attributes, and the relationships between relations, and the related processes. The

description of the process design includes the menus, forms, screens, and process logic.

The next chapter discusses the next stage of database development, the implementation

phase.

37

IV. DATABASE SYSTEM IMPLEMENTATION

Similar to the requirements and design phases, the implementation phase consists of

two parts, data implementation and process implementation. In data implementation the

relational model is converted into the database structure of a specific DBMS. Process

implementation involves the construction of forms, reports, menus, procedures, and

functions developed during the design phase. During this phase a specific DBMS software

is used, and implementation of the system becomes dependent on the functionality and

design of this software and its language, features, limitations, and structures. This chapter

describes system implementation by discussing software selection, the DBMS used, data

implementation, and process implementation.

A. SOFTWARE SELECTION

1. Software Requirements

This thesis is not only interested in developing a standalone database

application, but also a database application that integrates with an expert system

application. Therefore, a primary requirement for DBMS software to be used for this

thesis is that it be compatible with Softsell AdeptTM expert system shell used to develop

the MK92 FCS Maintenance Advisor being developed at the school. Since Adept is a

Microsoft Windows-based program, the selected DBMS must have the ability to pass data

or information using Windows mechanisms.

Another consideration was whether the software supported the development

of a "run-time" version for the user, so that the full database environment is not required

to be included with the operational version. This requirement saves both money and

storage space, which is generally scarce on laptop computers.

38

A third consideration was, of course, the functionality and ease of use of both

the development environment and the user environment.

2. Available Software Programs: Advantages and Disadvantages

With above selection criteria in mind, the initial software selection was made

early in 1993. At that time the major Windows database programs had been just

introduced and experience with their use was rather limited.

a M',rosOftAccA=TM DB.M

Microsoft Access DBMS had the advantage that it is a Microsoft

product. Since Windows is also a Microsoft product, conceivably Access would have a

better implementation of one of the primary Windows communications mechanisms of

interest, Dynamic Data Exchange. The application development environment was

considered to be the easiest, but was less capable in developing and running queries than

Paradox. (Coffee, 1993, pp. 270-297) One feature of interest was the availability of an

application development kit, which could produce run-time executable programs for

distribution to the end-users.

b. Borland ParadoxTM DBMS for Wi-ndows

The Paradox DBMS was also well reviewed, and in some respects

considered to be better than Access. Paradox has a report generator which was

considered to be the best of these three databases, but required the use of its programming

language for most tasks unlike the Access! macro facility which simplifies development

(Coffee, 1993, pp. 270-297). Paradox has a programming language which is considered

to be a superior, object-oriented, C-like language (Coffee, 1993, p. 285). A run-time

engine or application development version was not advertised, but likely to be announced

in the future since one is available for the Paradox version for DOS. The major drawback

with Paradox was that communications between two different programs is difficult

39

enough, let alone if the database and expert system interface were to involve three vendors

(W-mdows, Paradox, and Adept).

C. Microsm ft FwxhvrM DBMSfor Window

FoxPro DBMS is considered to be a superior development environment,

but challenging for a programmer not already experienced in programming in an XBase

programming language, such as dBASE uses (Campbell and Hudnall, 1993, p. 25). With

this in mind, there seemed to be too much of a learning curve to overcome if FoxPro were

to be used. DDE capabilities were also unknown, although Microsoft was a major player

in converting FoxPro, from being initially a program for the Macintosh, to versions for

Windows and DOS. It is therefore likely that FoxPro's DDE environment is as capable as

that of Access.

3. DBMS Selected

Base on an analysis of application requirements and the characteristics of

initial DBMS selection as well as literature reviews, Access was selected as the

development environment for this thesis. FoxPro was initially considered after being

recommended by NSWC sponsors, but was eliminated from further consideration after it

was discovered, as mentioned above, that it has a steep learning curve.

B. MICROSOFT ACCESSTM DBMS OVERVIEW

Microsoft Access DBMS provides a comprehensive development environment for

developing database applications. It consists of six main components: tables, forms,

queries, reports, macros, and modules. These components are invoked from the Access

main database window, shown in Figure 2, to develop all database objects (tables, forms,

reports, etc.) for an application. In addition, an extensive help system is available, which

includes information based on a search, examples, and "Cue Cards." Cue cards are an on-

40

line form of tutorial which steps the user through the creation/design of a particular object.

The following sections discuss each component of Access in some detail..

Database: 2M1(92DB

SNODE
IS NODE4-1ELP
M NODE-REPL
M PART

DM Temp~ode.Rp

Figure 2 - Database Window

1. Tables

a Table Creation and Definition

Tables are created by selecting the "Table" and "New" buttons in the

database window. This brings up the Table environment or "Design View." In this view

the fields are named, and the type and length of data that will be stored in each field as

well as any rules which govern data entry into the table are specified. Table properties

such as a description, a key, and indexes may also be entered in this view or at a later time.

These items will be discussed in more detail below. The design environment for a table is

shown below, in Figure 3. (Jones, 1994, pp. 39-40)

There are eight types of fields including text, memo, number, data/time,

currency, counter, yes/no, and OLE object. Memo fields allow a great deal of flexibility in

41

the amount of data it can hold, and are useful for storage of a large amount of text since

up to 32,000 characters can be stored in a memo field for each record. Descriptions for

each field can also be added. (Jones, pp. 40-42)

Once the field type has been defined, there are a number of field

properties applicable to each type of field. For example, the properties for a text field are

the field size, the caption, the default value (if any), the validation rule (if any), validation

text (if any), and whether the field will be indexed. There is a default size for text fields,

which may be chged in the properties box. There are other properties associated with

the other data types. "Validation rules" are a feature which lets the developer control how

data is accepted into the fields of a table, so program code is not needed for validating

data on data-entry forms. Other properties may be added or changed, as appropriate,

including field sizes. (Jones, 1994, pp. 46-49)

In most tables, there will be a key field or fields, and this relates directly

to the key attribute(s) in the relation design. The key field (or combination of fields) is

assigned by highlighting the particular field or fields and then selecting the "Key"

command button on the toolbar menu, a feature which can be seen in Figure 3. An index

can be added to most fields of a table (all fields except fields of data type memo, yes/no,

and OLE object). Indexes are used to speed the performance of searches on a given field.

(Jones, 1994, p. 60)

42

hMlarose Access

I Sl Id Vie I I I I I !

Table.: MPLACEMENT

I T.

ao~ Proepatleo

Figure 3 - Table Design Environment Example

b. Establishing Relationships Between Tables

Once the tables in a database hav• oeen created, relationships between

these tables can be established. This is performed by selecting "Edit/Relationships" from

the menu and then filling in the options in the Relationship dialog box, which is shown in

Figure 4.

C* Soon PMWW

Auve p®S o a~n Lo,,,' , ,wtw.i

Figure 4 - The Relationships Dialog Box

Defining relationships between tables allows for the automatic

definition of the related field during the design of queries, form/subform combinations,

and report/subreport combinations. The effect of these defined relationships will be

43

discussed later within the context of the different types of objects in later sections of this

chapter. This will also provide enforcement of referential integrity between the data in

related tables, if desired. If the referential integrity option is turned on, then Access will

maintain referential integrity during operations which involve the editing and deleting of

records. This means that records cannot be added to a related table if there is no

corresponding entry for the matching field in the primary table, and similarly, a record

from the primary table cannot be deleted if that will leave related records in the other table

as "orphans." (Jones, 1994, p. 62) This feature may be desirable during the use of a

database, especially if specific program code is not used to perform the same functions.

To define a relationship, the primary table is selected first. Then the

type of relationship is defined as either "One," which defines a one-to-one relationship, or

"Many," which defines a one-to-many relationship. Next, the related table is selected in

that list box. The matching field used to link the tables is then selected. Finally, if the

"Enforce Referential Integrity" feature is desired, that check box is selected.

c. Data Entry

Data entry may be performed by using a form or directly in the Table

"Datasheet" view. If a Table is selected and the "Open" command button is used, it will

open that table's datasheet view showing all existing records. This view allows the entry

of new records and existing records can be changed. If it is not necessary to view existing

records, but merely add new ones, once a table is opened, "Records/Data Entry" may be

selected from the menu to facilitate the entry of new data records.

2. Queries

Queries are one of the most important components of a database system,

because they provide the capability to display and/or report data to the user. Queries are

44

used to find data within the Tables of a database. Once a query is created, it becomes the

basis for forms, reports, graphs, and/or other queries.

a Types of Querie

There are several types of queries: select queries, which retrieve data to

be viewed or updated; crosstab queries, which present data in a spreadsheet format; and

action queries, which can be used to update existing tables, delete records, and make a

new table from other tables. (Microsoft Corporation, Access User's Guide, 1992)

b. Query Development

Access has a feature called graphical query by example (QBE), which

allows queries to be created quickly by selecting the tables to be used and then selecting

the desired fields of those tables. Tables can also be joined in several ways, such as with

an outer join, so that records from one table which do not match records from the second

table can still be displayed to the user. Criteria for particular fields can be specified, so

that records which have data matching the criteria will be selected.

To design a new query, the "Query" button on the Access database

menu is selected followed by the "New" button. At this time, an interface is opened

which allows the user to select the object(s) on which the query will operate on (Tables or

Queries) in the "Add Table" window. When objects are added, they appear in the query

window, such as the table PART, shown in Figure 5 below. After all of the desired

objects are added to the QBE window, the relationships between them are established by

connecting the related fields of the two tables. If the relationship is obvious, i.e. the two

fields have the same name or relationships have been established earlier, relationships in

the QBE environment appear automatically. If relationships are not previously

established, they can be created or "drawn" by cicking on the first related field and

holding the left mouse button down and dragging until it touches the related field on the

45

second table. These relationships are shown in the diagrams of the completed queries.

(Figures 12 and 13, below)

SSelectQuery .uery1

Add Table

(•.MowaChock R"A 0maa
Got sup* Inme

ODE•

After drawing relationships, particular fields of interest are selected from

the tables and placed into the "Field" box of the QBE grid. The easiest way to perform

this task is to use the mouse and click on the particular field in a table and "drag" it into

the "Field" box of the grid. The developer can choose whether or not to display a field;

whether to use an ascending, or descending, or no order, and on what criteria the selection

willibe based, if any.

3. Forms

Menus, screens, and forms are all developed in Access as Forms, with the

term screen and form being generally synonymous.

. Form Development Environment

Forms can be created using an easy to use generator called a "Form

Wizard" or from scratch. The generator requires the programmer to select a Table or

46

Query on which the form will be based, and then it proceeds to ask what type of form,

which fields to include, and what "look" the form will have from several options

presented. The basic form is designed by the "wizard." Subsequently, the developer could

make changes to that form using other form development tools, which are described

below.

The form design "toolbox" is used to add a number of different kinds of

controls to particular form. These controls include text boxes, labels, command buttons,

check boxes, list boxes, subreport/subforms, lines, option buttons, and toggle buttons.

Text boxes are used for input or output of information and are either bound to a field, so

they display the information from that field, or unbound. Unbound text boxes are often

used for user input of information. Command buttons are used to "activate" processes

relating to a form. List boxes are related to a particular list of choices, usually the

particular data items stored in a particular field of a table. The choices in a list box, or

combo box, can also be enumerated lists which are not from another object.

Various properties, such as control name, control source, status bar

text, data format, default values, and validation rules can be set for each control. For text

boxes, there are other properties such as whether the box can shrink or grow, when it will

be displayed, etc.

A palette feature can be used to quickly apply colors to text,

backgrounds, and borders within forms. The palette can also be used to change the "look"

of controls giving them a sunken or raised 3-D effect.

The toolbox, palette, and properties box are all windows which may be

activated by command buttons on the screen toolbar. The toolbar can also be used to

toggle between the design view and the form view of the form. The size of the form

"window" can easily be resized by dragging the borders in or out using a mouse.

47

In addition, once a form or menu is created, it is simple to copy it to

another form name, and change the control sources and properties for a particular control.

This "copy and paste" capability provides consistency within various levels of menus and

across an application.

The form design environment is shown in Figure 6.

Irk MN :I

W41 0 NtW" 0 lt~ob 0 SMUAet

IMK92 FCS MAES 1Ddme - A,&i*d=i V e

Figure 6 - Form Design Environment

b. Menu Screens

The design of menu forms involves three tasks: the design of the form

itsel the design of a mechanism to perform process actions, and a method for connecting

the form and the actions mechanism. Menu forms are designed using blank forms, and can

not be designed using the form wizard since menu forms are not bound to an object.

Labels can be added for different headings, and command buttons with labels can be added

for invoking various processes.

Macros are used as the mechanism by which process actions are

performed by a form (both menu and other types of forms). Forms are invoked by

macros, and use macros to invoke related processes. Macros can be invoked upon the

48

opening of a form, by a control such as a command button, or upon the exiting from a

form. The use of macros with forms will be described further in Section 5.

c. Input/Output Screens

Input and output forms are more complex than menu forms. Where

menu forms included only one action type of control, the command button, input/output

screens usually include additional controls. Most output forms are bound to a source such

as a table or query. If the data to be displayed comes from a single table, the form is

bound to that table, and each text box or list box on the form is bound to a field in that

table. If the data in a single form comes from more than one table, but does not involve a

1 .M relationship on the form itsel a query can be performed on those tables, and the

form's object source can be the query. As with a single table, one or more fields in the

query may be bound to a particular display control.

It is possible to display related information in a formlsubform

combination. Generally the subform is created first, or created at the same time with the

Form Wizard. When the subform is created first, the main form is created, and then the

toolbox is used to add the subform control. Forms are linked via MASTER and CHILD

entries in the subform control properties listing, using the common field in the related

tables. These MASTER/CHILD fields relate directly to the Key/Foreign key relationship

in the underlying relations. Neither of these fields have to be displayed on either form, but

must exist in the sources on which the forms are based. An example of the creation of the

subform is contained in Section D, below.

Forms which accept input from the user may be bound to a particular

source or may be unbound. An unbound form uses text boxes and/or possibly other

controls, to accept user input. This form will then use a process invoked by a command

button to connect the information in the text box to another object. An example of this

49

will be provided in Section D. Display or output forms become input forms when they

accept input in the form of updates from the user.

4. Reports

Reports can be created from scratch or using an easy to use generator called a

"Report Wizard'. As with the Form Wizard, the report generator requires the

programmer to select a Table or Query on which the report will be based. The generator

then asks questions such as what type of report, which fields to include, and what "look"

the users want for their report from several options presented. Once the basic report is

designed by the generator, it is easy to make changes after afterwards. The palette and

toolbox can be used to add various design elements to reports.

Reports can be one of several types: Single column, with all fields lined up

vertically, Groups/Totals, with groupings up to ten levels; or Mailing Labels. Text boxes

can be added to reports that display data based on a calculation such as the sum (total) of

the values. Multi-table reports can be created using a report/sub-report combination, with

multiple instances in the table on which the sub-report is based related to a particular

instance of the table on which the master (or main) report is based. Default reports come

with controls which provide the current date each time the report is printed or viewed, and

page numbers, but these features can be modified or deleted as desired.

The design of reports involves both the design of the report itself and the

design of the mechanism used to invoke the report from the menu. In this application,

many of the reports are report/subreport combinations, which means that subreports were

designed first. When the main report is designed, a subreport control is added to the

report. The properties of this control include the source of the control and which fields

are used to link the report and subreport in a MASTER/CHILD relationship like that used

so

with muld-table forms. In general, the linking field is only displayed on one of the forms,

but need not be displayed on either.

Examples of the implemenation of several reports are provided Section D.

below. The report design environment is shown in Figure 7.

W. Maumos

a, Macre Design

Macros contain one or more instructions which are grouped together to

perform various procedures or actions. These instructions or actions model the process

logic in the design of a database application. In Access, Macros ar-e used to replace

program code in most instances, thus simplifying application development. An example of

a macro design envronment is provided m Figure 8.

51

-- ,,,.,,mmmm~~mmu ,* ,,,, 0 Rmu 0l IIumW *nA• N~llI

PUP if I)I I

,• .•.. iL • • .. 0 .• .

..................•
I [...............

Figure 8 - Macro Design Environment

Macros can be used to perform routine tasks, such as the following (Jones,

1994, p. 17 8):

1. Automatically opening or displaying frequently used objects, such as tables, forms, and

reports.

2. Validating data entered into a form with greater flexibility than is provided within the

validation mechanism in a Table.

3. Automating transfer of data (import or export) between an Access application and

other software packages.

Macros consist of a series of "actions" and each action has one or more

argument which applies to that action. Macro actions include the following: Close

(window), GoToControl, FidRecord, Maximize, OpenForm, MsgBox, OpenQuery,

OpenReport, Quit, RunCode, RunMacro, SetWarnings, and others. These actions will not

be discussed, except in the context of specific application requirements later in this

chapter. Each one of these actions has its own set of arguments, for example the

arguments for the OpenForm action are the name of the form which is to be opened and

several other items which apply.

The macro design environment allows the user to select an action from a list

of permitted actions, and then the appropriate arguments are displayed in the window

52

below. The mechanism for entry of arguments is also shown in Figure 7. Macros can be

designed as a single set of actions, or as macro groups. Storing related macros together as

a group simplifies the design environment for the programmer.

&. Using Macros With Forms

On forms, command buttons are used to invoke these macros, through

the use of the "On Push" property of the command buttons. The macro name is entered

into this property, and when that button is "pushed" or selected, the macro actions are

invoked in sequence.

Menu forms are displayed using the macro "OpenForm" command,

which will display a particular form to the user. Some menus invoke submenus, and in this

case, a macro is used by the menu to open the submenu form. Generally, each menu

command button is linked to a macro which opens a form of one type or another. What is

not apparent to the user, is that there are other actions which are performed by the same

macros, either before or after the form is displayed. An example of this might be a macro

action which turns "Echo" off, so that the user does not see messages which Access

normally provides while macros are run. Another example is a macro action which would

"Maximize" a form, thereby filling the entire screen with a form, after it is invoked.

a Linking Input and Output Forms

One useful technique for linking input forms and output forms is

through the macro action OpenForm and its "Where Condition" argument. The initial

form displayed may request an item of interest. This form is not bound to a particular

source, and the control into which the user types the requested information is also

unbound. A command button on the form can then invoke a macro which retrieves the

necessary information based on user input, and then displays it. The simplest form of the

macro works in the following manner: the OpenForm action contains a number of

53

arguments, the first of which is the name of the form which is to be opened. The next

important argument is "Where Condition," which allows the programmer to specify which

field in the source of the display form is based on the control in the form receiving the user

input. An example of the syntax used is as follows: (Field Name] = Forms! [Input Form

Name]l(Control Name]. This presents the user with the record having a match in that

particular source field with the information provided into the Input Form in the control of

the name specified. Another important argument is whether the user will be allowed to

edit the data presented or whether it will be "read only."

6. Modules

a. Use of Access Basic

Access Basic is not a traditional programming language and cannot

really be treated as such, since the language is tightly integrated with Access-specific

objects (such as tables, forms, queries, etc.) such that the language can directly manipulate

these objects. Access Basic is primarily used to perform tasks that cannot be performed

with Access objects though the use of macros, or is used to shield the user from the inner

workings of the application in a controlled run-time environment. Access Basic is

particularly useful for transaction processing, error handling and trapping, performing

DDE, and the creation of reusable code libraries. (Perschke and Liczbanski, 1993, p. 170)

Access Basic code is stored in objects called modules. Modules are

divided into procedures or functions, which are best used to perform specific tasks in

order to modularize program code and maximize reuse. (Perschke and Liczbanski, 1993,

p. 181)

Modules are used to define functions specified in the design phase of

Chapter HI. Some actions specified in logical procedures are actually implemented in

modules vice macros, usually because they perform specific tasks which the macro

54

environment is not capable of performing. Modules can invoke macros, using the

"RumMacro" command, and macros can invoke functions in modules, using the

"RunCode" action. This allows for flexibility and the maximum reuse of macros and

functions once they are designed.

& Access Basic Language

Access Basic provides the capability for a number of different types of

data and the manipulation of those data types. It also contains several flow control

structures such as decision structures (If... Them.. Else..., Select Case), loop structures

(Do Until... Loop, Do While... Loop, Do ... Loop While, For... Next). "Do Loops," for

example, are used to execute a block of code while a condition is True. (Perschke and

Liczbanski, 1993, pp. 187-188)

Within the Access Basic language, there are different types of elements,

and some of these are described as follows: Actions, such as those used with macros, can

be executed directly from Access Basic procedures using the "DoCmd" statement;

Functions are preprogrammed language elements which return a value which can be

returned in a statement, such as DDEInitiate, DDERequest, and many others; Objects,

such as Forms, Reports, Tables, Database, and others; Operators, like "+", "And", "Or",

"Not", and others; Properties, which are the same as the properties attached to objects,

and which can be controlled directly from the code if necessary, and several others. An

example of the Module Design Environment and the Access Basic Language is shown in

Figure 9. (Microsoft Corporation, 1992, Access Language Reference)

55

Mkroes Aces -Iuebde pdes

Se% dt Yiew flureatin() iel

Fsetio m" * 2.catedwaast(S
Stbaniemepi to relatedrecordastoall SE-Etaue

Oldpiteade - Torus(ae Them f(sd#
Nf Wodu(re - u Fa w[e ghasWaclrtdt hmel SadbeSt

Criteri - [Si.3 SmodeS .

Using tet accs Tabl4estefacltyteareaionaldsgndvlpe rvoula

their felds ar lisgtedinAppeni E. MoeWvst fild used in this prora wer ofaoex

natue, sncethre werea v-i fewdata itemswhich weesrcl&uerclofxd

Thegtabes in thi appulcatsion containrongmfelds duAces to si thenatureoftedaate

contin. the length ofafiels, and therefrelathenalengthiof aereored, mpkesvieulywin aecrs

convetdit a n Acctaheet orsradset-type. ofi froreat impfarac tical. towri taeain

Valthidationerules are eonterted inspethvel formof expreassionsbinsiade thelTabl dabesiand

natuesionofAcess andr aere consistendta witemhithe attriue definitionu"meiasksr"fstaed"

Appeni tabSection B.i (Jonesio 1994,i pp. g 48-49) et tentueo tedtate

56

D. PROCESS IMPLEMENTATION

Process implementation consists of linking the required forms and reports,

developed initially during the design phase of Chapter III and shown in Appendix D, with

their underlying processes. The processes designed in Chapter mI are implemented

through the use of queries, macros, and modules which connect the forms and reports to

the appropriate data in the tables. The methods and tools used to implement processes are

discussed below.

1. Process Development and Examples

Process logic developed in the design phase of Chapter In can be roughly

translated into a series of tasks which are implemented in a number of different ways.

Some tasks may be implemented in more than one way, and not all possible methods of

performing various tasks will be covered in this thesis, rather only those actually used.

a. Implementation of Specific Process Tasks

Process tasks which are part of the process logic developed in the

Design Phase, such as update, activate, retrieve, and others, are implemented in fairly

standard ways within this application. Appendix E contains a listing of these tasks and the

way(s) in which they are implemented (modules, macros, etc.).

b. Process Example: Locate Supply Parts

The process which is listed in Procedure U1.2L LOCATE(U) in

Appendix D is implemented using a combination of macros and an Access Basic

procedure. First, the INPUT PART# [UPDATE PART] form is open. The user provides

input in the form of a Part# and then "pushes" the Locate command button which

activates this procedure.

The "On Push" property activates a macro called Part Macros.Locate

Parts. This macro performs actions described in Figure 10:

57

1. Set Value - Description: Hides form
Arguments: Visible: No

2. OpenForm - Description: Opens the Part Supply Info form, retrieves the record
which has the value of Part# contained in the Part# field in the Part# Input Form, and
displays it in the form.

Arguments: Form: Part Supply Info Description: Opens the Part Supply
View:. Form
Where Condition: [Part#]=Forms! [Part# Input]![Part#]
Data Mode: Edit
Window Mode: Normal

3. RunCode Description: Checks to see if the Part# in the Part Supply Info form
is a null value, if so, then the Part# does not exist or no value was entered. A message box,
with a message to that effect is provided to the user and the user returns to the Part# Input
form.

Arguments: Function Name: CheckEmptyPartO

Figure 10- Locate Part Macro

The function referred to in the RunCode action, CheckEmptyParto is shown in Figure

11. Note, this function calls another macro, with the DoCmd RunMacro statement.

This macro is the one which returns the user to the Input Part# screen.

Function CheckEmptyPart 0

PartX = Forms! [Part Supply Info]![Part#]
If IsNu(PartX) Then

wID = MsgBox("No matching Part # found (or No Part # entered)", 32,
"No Match Found")

DoCmd RunMacro "Part Macros.More Parts"
EndIf

End Function

Figure 11 - CheckEmptyParto Function

58

2. Query Development and Examples

Queries are important to this application because they provide the basis for

several important functions, which will be discussed in this and later sections. Queries

using outer joins and/or specified criteria are used in this application. Both select queries

and action queries are used in this application, and will be discussed in the examples

provided. A list of the queries in this application is provided in Appendix E.

This section will contain discussion concerning the implementation of several

of the queries in this database application. Note, there are a number of different ways in

which these queries may be accomplished, in order to achieve the same results.

a. Parts On Order Query

The Parts on Order query used for the Parts on Order report was

created in the QBE environment. The development of the report is discussed in Section 5,

below, but the implementation of the actual query is discussed here. In this query, two

tables are used in the query: PART and REPLACEMENT. These tables are linked

through the common attribute Part#. Because it is possible to have PART instances which

do not have corresponding REPLACEMENT instances, an outer join from PART to

REPLACEMENT is used to retrieve all instances of PART, including those that do not

have REPLACEMENT instances associated with them. Note, this outer join is designated

by the arrow on the relationship link between the tables in Figure 12. The selection

criteria used is that the value of the field Parts On Order is greater than zero, and the fields

Part# and Parts On Order are displayed. This query is shown in Figure 12, below.

59

Select 2- Parts On Order

A~ secnd ue1 Pist alo usdfo, h sm eprPat n re2.Ti

L MS
Figure 12-Partson OreQey

Aot seodqur also uefOrnh aerprPat nOdr.Ti

query is used to link the REPLACEMENT table and the PART table to get all UD#s

associated with the selected Part#., This query is shown in Figure 13.

Figure 13 - Parts on Order Query

Elie Edih 'iew Query A'indow Help

UI• NSN

A•Loc ~COSALA~w
Cl:Rd 1 Paft On Hand

Noesi Pelts On 0O:lo

Pamt M UD# IPart On Order

Figure 13 - Parts on Order2 Query

60

b. System Parts List Query

There are three queries used in creating the System Parts List report,

which is a list of all the parts which are used by the expert system, i.e. parts that currently

have replacements. Two are created in a similar manner as in the Parts On Order query

above, but instead of being based on one of the main tables in the database, they are based

on a temporary table which is created through the use of a "Make Table" action query.

The use of the action query will be discussed here, with respect to the creation of the

System Parts List report.

The first step in creating a "Make Table" action query, is to create a

select query, using the QBE environment as discussed above. The purpose of this query is

to select a list of unique parts from the REPLACEMENT table to be used as the basis for

other queries. The criteria Part# Is Not Null is also used, to eliminate records in this table

which have no value for Part#.

Once the select query is designed and tested, it is converted into a

"Make Table" action query by selecting "Query: Make Table" from the menus at the top

of the Access window. The name of the table to be created, when the query is performed,

is entered into a form as shown in Figure 14, below. The table created by this query, can

be considered a temporary table, and is named PartsList. Using the "Check Box" for

"Unique Values Only" at the bottom of this form ensures there are no duplicate values in

this new table, which could occur when several UD#s have the same Part#, as Part# is not

the original key field of the REPLACEMENT table.

61

Figure 14 - Make Table Query Properties

Each time this query is run, the PartsList table will be overwritten with

new data. Unless warnings are suppressed, this action will tell the user that this query will

overwrite existing data and verify whether or not the query should continue. The Systems

Part List query is used as the basis of another query, which are used in the System Parts

List report, and is shown in Figure 15. The other queries for this report are implemented

in the same manner as those for the Parts On Order report, in the previous example,

except they are based on the temporary PartsList table instead on one of the application's

base tables.

Make Table Quer sytem Paels Ust

Fiue 5-aytetarsLiLQur

Ai6 Loc
CktRdl1
Not

Not Is NtA

Figure 15 - System Parts List Query

62

3. Menu/Screen/Form Development Examples

Examples of the implementation of several forms are provided in the section

below. A fist of the application forms is provided in Appendix E. This list also contains

domenation concerning each form's source, its controls and the processes invoked by

these controls, and any special characteristics or properties of the form.

a Update Node-Replacement - Admin Form

This form is one of the most complex forms in this application. It is

comprised of three separate forms, which are linked together in a form/subform

relationship. The "Form Wizard" is used to design the form/subform combination. With

two layers of subforms, only the inner two forms could be designed using the Form

Wizard method. All forms may also be created with the Form Wizard, using the "single-

column" selection, and adding a subform control from the Toolbox as required.

(1) Form: Replacement Info Sub(sub)form. The first form created

was the form based on the REPA•T.M•kC'ENT table. The first step after selecting the

"Form: New" button, was to chG s ,ne correct table, and then select the "Form Wizard"

button. After that, the Embossed "look" was selected from the choices presented. Next,

the fields in the table were listed, and the ones to be included in the table were selected, in

the particular order desired. The final step is to select a title (form heading) for the form.

In this form's properties box, the scroll bars and the record

selectors were checked off to prevent the user from trying inadvertently to select records

using these tools. A property in the Form Header (section) properties box was used to

"hide" the header section. Finally the form was resized and the text boxes moved so that

the field labels display in their entirety.

63

(2) Form: Node-Replacement Info Subform. The Form Wizard was

used again to create a form, based on the NODE-REPL table. In addition, to changes

made to the previous form, the "look" of the UD# field was changed to "raised" versus

"sunken", to distinguish a field which is not directly updatable from ones which are not.

Several controls were added to this form: two command buttons,

three labels, and the subform. The "command button" button on the toolbox was used to

add these controls to the form. First, the properties were changed as follows: the caption

was changed, so the words on the button indicated the function of the button; and the

Update Macros: Scroll Up macro was added to the "On Push" property of the "Back"

button and another macro to the "Fwd" button, to provide the correct finctionality.

Three labels were added to provide information to the user concerning the buttons. The

palette was used to add a frame and color to one of the labels, to draw the users attention

to the information contained therein.

The third type of control, the subform/subreport control, was then

added to the form. Through trial and error and switching between form views (Design

and Open), the subform was sized so that it displayed correctly on this form when this

form is opened. The Source Object control must contain the name of the subform, which

in this case is Replacement Info Sub(sub), and the Link Master/Child Fields property is

set to UD#.

Figure 16 shows the design environment of this form. The

properties box for the subform control is shown in the upper right-hand comer, the

toolbox is shown in the lower right-hand corner, and the palette is shown in the lower

center of the figure.

64

Microsoft Access

IS Nose UD.

WA Applicable -UD. -------

IDocumnt~afiom REO-eormc:!I R.

U pdate ReO Fk Sub)

Ap 181.08 0 N4or" 0 R~~k~d 0 Swi~m

Figure 16 - Node-RepI Info Form Design Environment

(3) Form: Node-Replacement Info. This is the main form for this set

of subforms, and is the one opened by the command button "By Node#" on the "Select

Change" Submenu of the DB Maintenance Submenu. The form and its controls are

designed in the same manner as the previous form. There are two differences to this form:

one is that the header is left so it is visible and the second is that the "*" button invokes a

macro which in turn invokes a series of screen displays and associated logic.

65

I, Input Node# Forn

This form was not designed using the Form WMizard since it is not based

on a source object. Form properties were set so "-. A there were no record selectors or

scroll bars visible, as in the previous forms. When a blank form is opened, there is no

automatic creation of a form header or footer, so a Label control was used to add a form

heading. Two command buttons were added, with each button invoking a different macro

using the On Push property.

4. Report Development Examples

The reports implemented in this application are listed in Appendix E. These

reports were all implemented with the Report Wizard, using the *Executive Look."

. Parts On Order Report

The Parts On Order report is comprised of two reports, Parts On

Order and Parts On Order2, which are combined in a report/subreport combination. A

sample report is provided in Figure D-16, Appendix D.

(1) Report: Parts On Order Subreport. The Pans On Order report is

a single-column type report based on the Parts On Order2 query, which was discussed in

Section 2.b.(1)(b) above. While both Part# and UD# are included in the report source

query, only UD# is included on this subreport since Part# will be shown on the main

report. The field to be used for a sort order was also selected. The default settings for

Report Header and Footer were changed so that no Headers or Footers, either Report or

Page, were visible. The design environment of this report is shown in Figure 17.

66

Figure 17 - Parts On Order Subreport Design Environment

(2) Report: Parts On Order. This report was based on the Parts On

Order query (See Section 2.b.(IXa), above). Both Part# and Parts On Order Fields were

placed on the report, sorted in order of Part#.

A subreport control was created through the use of the toolbox,

with its source being the name of the subreport (Parts On Order2). The size of the

subreport must be manipulated within its design environment so that the detail section of

the subreport fits within the size of the subreport control. This is performed largely

through trial and error, and by noting the size of both items on the ruler. The "Link Child

Fields" and "Link Master Fields" are set to Part#, since this is the attribute which links the

report and subreport such that all UD#s for a particular Part# are listed in the subreport

section of the report. In addition, the default is set so that one record of the main report is

displayed on a single page. IK as in this case, it is desirable to have multiple records per

page, it is necessary to resize the detail section of the form so that the Page Footer section

break is right after the last item in the report design, the Parts On Order field and its label.

67

The design environment of this report is shown in Figure 18. An example of the report

itself is shown in Figure D-16, Appendix D.

Re art: R-Prts on Order
Su lrm/Subreport

No

ionOrr: Parts On Ord

Figure 18- Parts On Order Report Design Environment

b. System Parts List Report The System Parts List report is comprised of

two reports, System Parts and System Parts2, which are combined in a report/subreport

combination. The implementation of these reports is very similar to the implementation of

the Parts On Order Report, and only the differences between the two reports will be

discussed. An example of the printout of this report is provided in Figure D-18,

Appendix D.

(1) Report: System Parts List Subreport. The System Parts List

report was created using the "Report Wizard," based on the System Parts query, which

was discussed in Section 2.b.(2)(b), above. This report was created by copying the Parts

On Order report and making two changes. First, the Report property Record Source was

68

• • • • i I I I I

changed to System Pars2 and the detail section of the report was enlarged slightly to fit

into the space of the main report.

(2) Report: System Parts List. This report was designed using the

"Report Wizard," based on the System Parts query (See Section 2.b.(2Xa) above). Part#

is the only field on this report and is sorted in ascending order. The subreport control was

added, its label removed, and System Parts2 was entered into its Source Object property.

The Child Link Fields and Master Link Fields properties were also UD#. Again, this

provides all UD#s for each Part#. In order to report as many parts (and their UID#s) per

page as possible, the detail section was compressed to the smallest practical size. The

design environment of this report is shown below in Figure 19.

Complete Parts Listing for Systenvi

Pig---- Part
Subfo6ubreport

Pa•

Figure 19 - System Parts List Report Design Environment

69

E OUTPUT OF THE IMPLEMENTAT[ON PHASE

At the conclusion of the implementation phase, the database application is

completed, and operational, as designed. This includes the development of the tables,

forms, reports, and their underlying processes and queries. If a prototyping methodology

was not being employed, the database application would be independently tested and

delivered to the user. Instead, the prototype application is used as a device to elicit

feedback for future enhancements. Once the users experiment with the prototype, they are

able to better define their requirements and comment on the preliminary design, and its

structure and processes could be changed accordingly. The final chapter contains some of

the feedback received from the program managers at NSWC, which will guide the

direction of follow-on work.

The next chapter contains a discussion of the separate issue in this thesis, that of the

interface between the MK92 FCS MAES and this database application.

70

V. INTERFACE BETWEEN EXPERT AND DATABASE SYSTEM

In general, the purpose of creating an interface between the expert system and a

database is to provide a powerful mechanism for storing and managing information

required by the expert system user, which is more efficient than mechanisms provided by

the expert system itself Efficiency can be defined both in terms of flexibility to retrieve

different kinds of data for different purposes and in terms of maintainability and

modifiability. This chapter discusses Windows interprogram communications mechanisms

and the efforts made towards using these mechanism to link the MK92 FCS MAES and

the Access database application which stores and manages the information the expert

system is requires.

A. WINDOWS INTERPROGRAM COMMUNICATION

1. Dynamic Data Exchange (DDE)

DDE is one method of interprogram communications between two Windows

applications. The program that initiates the communication and requests data or services

is called the client, and the program that repnonds to the client's request is called the

server. Some applications can be both client and server.

DDE can be used to establish links between programs in several different

ways. As previously mentioned, one method involves requesting data (or services) from

the server. Another method involves the server notifying the client that an item has

changed value, after which time, the client could make a request in order to obtain the new

data. A third method involves a "hot link," which means that the server application sends

the new value to the client any time the data value changes. (Perschke and Liczbanski,

1993, p. 243)

71

In general, the application initiating a DDE link opens a DDE channel with the

other application. The client can then use a number of DDE functions or statements to

perform different tasks. Since the syntax used for DDE by different programs is not

standard, functions available to Access and Adept are discussed separately.

a. DDE in Access

Access is capable of handling a number of different DDE functions or

commands, and these are listed in Appendix F. Access has the capability of being both a

DDE client or a DDE server. DDEInitiateO is used to initiate a conversation between

Access and another application. Included in the argument for this function is the name of

the application which can respond to DDE, such as the name of "Adept," and the name of

the topic, which in the case of Adept is the specific "application name" being executed.

The topic name must be recognized by the "called" application. This function is used to

establish a channel between two applications, which can be used later with other DDE

functions. The use of this and other functions is shown in the example provided in

Appendix F, Section C-2. (Microsoft Corporation, Access Language Reference, 1992,

p.118)

Another important function is DDERequesto, which is used to request

an item of information from another application. Arguments for this function include the

channel (as previously mentioned) and the item of interest. The name of the item must be

something which is recognized by the other application, such as variable or spreadsheet

name. (Microsoft Corporation, Access Language Reference, 1992, p.121)

DDETerminateO is used to close a channel which has been opened,

with the argument being the channel. (Microsoft Corporation, Access Language

Reference, 1992, p. 124)

72

Additional commands are available, as shown in Appendix F, Section

A- 1, but they are not used in this thesis.

b, DDE in Adept

DDE in Adept is very similar to DDE in Access, except that different

syntax is used for similar functions. Like Access, many functions involve a channel, an

application, a topic, and/or an item. Theoretically, Adept can carry on a number of

conversations with different client programs at the same time. In a similar manner,

another application can request data from more than one Adept application, or two

different applications can request information from two different Adept applications at the

same time. (Symbologic Corporation, 1991, p. 33)

The first step in initiating a conversation with another application is to

use the OpenChannel function to open a channel. To use this function, the name of the

channel, the other application, and the topic are required (Symbologic Corporation, 1991,

p. 36). In the case of an application running under Access, the application name is

"MSAccess," and in the case of an Access run-time application, the application name is the

name of the run-time executable file1 . The syntax of the commands actually used by the

Adept application for the purpose of this thesis is provided in Appendix F, Section C-i.

Adept can request information from another application, using the

Request function. In this case, the channel, item, and data arguments are used. Item is a

variable which identifies the data (in the other application) and data is a variable where the

data is to be stored in Adept. (Symbologic Corporation, 1991, p. 37)

Execute can be used to execute a function, run a program, perform a

task, or a number of other things in the other application. This function uses the

arguments channel and command. The command is the most important part of this

1 A file with the ".MDB" extension.

73

function, as it must be something that can be understood by the other application. In

general, the syntax of the other program must be used to correctly use this function.

(Symbologic Corporation, 1991, p. 39) A good example of this is the use of Execute with

respect to an Access application. Only commands which Access understands can be used

with the Adept Execute command.

One other function which might be useful is Poke. This function uses

arguments channel, item, and data to specify what data item in Adept should be "sent" to

the other application, and where in the (client) application it should go. (Symbologic

Corporation, 1991, p. 39)

Other commands are available, as shown in Appendix F, Section B, but

they are not used in this thesis.

2. Object Linking and Embedding (OLE)

Object linking and embeddin& or OLE, is a Windows mechanism which

allows objects created in one application to be linked to or embedded in another

application. This method of interprogram communication is closely related to DDE, and

like DDE there are both clients and servers. As of Version 1.1, Access can only act as an

OLE client, in that it can only accept OLE objects from the server application. 2 An

enhanced version of OLE, OLE 2.0 is beginning to be used in applications, however

Access 1.1 is not OLE 2.0 compliant. (Jennings, 1993, pp. 504-505)

OLE capabilities were first used with Microsoft ExcelTM and

PowerPointTM, and were officially introduced with Windows 3.1. In general, an OLE

server provides a source "document" to an OLE client "document." Once an OLE object

is embedded or linked to the destination document, this document becomes a "compound

document." In the case of Access, the destination document can be tables or forms. A

2 Access 2.X is expected to be OLE 2.0 compliant.

74

source document can be a file from a word processor, a spreadsheet from an application

like Excel, a slide from a graphics program like PowerPoint, a graphics image from a

variety of programs, or even multimedia objects such as music. (Jennings, 1993, pp. 505-

506)

When an OLE object is embedded, a copy of the OLE object's data is included

in the destination document. Embedding an OLE object ensures that the object's data is

available regardless of what happens to the source. Linking a document is more

appropriate when the source document is likely to be changed periodically. However, if

the source document gets moved to another location or deleted, it no longer exists at the

destination either. (Jennings, 1993 pp. 510-511) A linked object will also update in the

client application whenever it is edited or updated in the server application which created

it. (Perschke and Liczbanski, 1993, p. 238) In some cases linking will save disk space,

since the object is only stored in one location. Graphics images, however, will require as

much or more disk space to link to an Access table or form, as to embed it. (Jennings,

1993, pp. 510-511)

One of the primary advantages to storing documents as OLE objects within

Access, rather than as *pictures," is that by using OLE the object can be edited through

the original server program which was used to embed the program. A source document

which has been embedded as a picture, rather than as an OLE object, can no longer be

edited. (Jennings, 1993, p. 511)

Other applications which can act as servers include Lotus Corporation Ami

ProTM, WordPerfectTM for Windows, CorelDRAW!TM, and Windows PaintbrushTM

There are also a number of commercial OLE-compliant drawing and image editing

applications which can be used to create and manipulate photos and other images.

(Jennings, 1993, pp. 511-517)

75

Adept is not OLE compliant at this time, but may be in future versions.

B. IMPLEMENTATION OF DDE INTERFACE BETWEEN ADEPT AND

ACCESS APPLICATIONS

1. General Requirements

Logically, the basic functionality of the interprogram communication between

Adept and Access is as follows:

1. When a conclusion is reached in Adept and part information is needed from the

database, Adept must initiate a conversation with Access, asking if Access is ready to

communicate.

2. If Access is ready to communicate, a communication channel is opened between

Access and Adept.

3. Adept sends a message to Access asking for data, or asking Access to perform a

query and supplies the appropriate parameters.

4. Access acknowledges the request and carries it out (or denies it).

5. After the data and commands are exchanged, Adept sends a message to the Access

program notifying it that the conversation is about to be terminated and then closes the

communication channel.

2. Possible Solutions

To perform the above basic functionality, an obvious solution is for the Adept

application to send the Node Number into the Access Application, where a query would

be run, and then the Adept application could request (or the Access application send) the

results of query, so it can be displayed to the user.

Another obvious solution would be for an SQL-type query to be made directly

from Adept, eliminating the need to send query parameters to Access.

76

OLE was obviously not an appropriate interface between the Adept expert

system and the Access database because Adept does not currently support OLE.

a Establishing Communications: F'st Approack

(1) Methodology. The following steps were taken in the first attempt

in establishing communications between the two programs:

1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Use Poke from Adept to Access to place the query parameter into a temporary table

in the Access application.

3. Execute a query, whose parameter is the value received from Adept through the

poke.

4. Request the results of the query and store it in a variable in Adept to be displayed to

the user.

5. Close channel.

(2) Results. The problem with this approach is that Poke cannot be

used to send data into an Access table. Since the initial attempt at establishing a link

between the expert system application and the database application using the Poke

command to send information to the Access application failed to work, a second approach

was used.

b. Second Approwch

(1) Methodology

1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Execute an SQL-type query directly from Adept, which locates the correct records

based on a parameter related to a particular expert system result node.

77

4. Request the information into an Adept variable.

3. Close channel.

(2) Results. SQL queries of any sort did not seem to work from

Adept to Access. While the set of statements required for the type of query in

requirement 2, above, is complex, even simple SQL-type statements did not get any

response from Access. Adept may not support the kind of statements Access needs or the

correct syntax may not have been used.

The first attempt to use of SQL-type statements was to perform

the complete query as shown in Figure 20, below. The second attempt to use of SQL-

type statements was to try to solve the problem of how to get information into an Access

table as shown in Figure 20.

"*Slect particular records from one table to start with:

AccCall = OpenChannel(MSAccess", "2MK92DB.MDB;SQL");
Execute (AccCall, "RunSQL SELECT * FROM Node WHERE [Node] --

""N006""; ");

"*Update lNX table with Node Number vice Poke command:

AccCalls = OpenChannel("MSAccess'7,C:\ACCESS\2MK92DB.MDB;SQL");
Execute (AccCall,, "RunSQL UPDATE INX SET [Node#] = "NOW"

Figure 20 - Adept DDE Statements Using SQL

SThird Approach

(1) Methodology

1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

78

2. Use the Execute command to execute an Access Query, with the appropriate

parameters.

3. Use Request to get the results of the query and store it in a variable in Adept to be

displayed to the user.

4. Close channel

(2) Results. Problem: While Adept DDE syntax supports the use of

an argument (i.e. a query parameter) in the Execute command, Access does not support

the use of arguments with its queries or macros. Since Access functions do support

arguments, passing parameters between the Node variable in Adept and the Nodenumber

variable in an Access function was attempted, also without success.

In the Execute statement in Adept, as previously discussed, the

first item is the channel, and the second is the command. The command has to be

something understood by Access. First, the command "RunCode PartsQueryo" (or any

number of syntax variations) could not be used in an Execute statement, as the RunCode

fimction can not be used directly by a DDE Execute. Instead, the RunCode action can be

used in a macro, which then may be executed using the syntax "Execute(Chan,

"[ITableOnly]". Unfortunately, there does not appear to be any way to pass arguments to

a macro.

There appears to be problems with the compatibility of the Adept

SQL syntax with that of Access in that arguments outside of the Access statements cannot

be passed with them. Even if an argument could be used, it might not be in the form of a

variable, thus eliminating some of the benefits of using a database if each Node number

had to be "hard-coded" inside scripts.

79

d Fourth Approach

(1) Methodology This methodology was suggested by Microsoft

Product Support personnel, and involves having Access request the query parameter from

Adept, instead of having Adept send it to Access.

1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Use Execute to run an Access Basic function which would:

a. Open a (second) channel between Access and Adept, with Access as the client

and Adept as the server.

b. Perform a DDERequest from Access to retrieve the query parameter, node

number.

c. Store the variable returned in a temporary table.

d. Close Access to Adept (second) channel.

3. Use Execute to run a query, whose parameter is the value received from Adept

through Access' DDERequest. Several different types of queries were attempted, and

these will be discussed below.

4. Use Request to get the results of the query and store it in a variable in Adept to be

displayed to the user.

5. Close channel.

(2) Phased Testing. Because this was a complex series of actions,

each step was tested separately before running the entire sequence. One problem with

interprogram communication is that there is no easy way to debug code, and only through

trial and error and modular testing, can problems be tracked to any particular statement.

80

The query (step 4) was tested first. After that, the DDE request by Adept (step 5) was

tested. Next, the request from Access to Adept (step 2b) was tested. Each step, and the

problems encountered, is discussed in the following sections.

(a) Query Solutions. Once it was determined that Adept could

easily retrieve the contents of an entire table from Access, the goal became to place all of

the required information, the results of query, in a single temporary table. This table has a

structure which matches the data items required by the expert system. Because this is an

extremely complicated query in Access Basic, a better solution is to implement a "Make

Table" Action query using QBE which is invoked from a macro.

If the Node# was placed in a temporary table, the macro

containing the OpenQuery action could be executed by the Adept application, and the

temporary "results" table would contain the correct information. Therefore step 4 was

working correctly, given the query argument was correct in the table on which the query

was based. This query is discussed in detail below, in Section 3.

(b) Adept Request. Given the table created in Step 4, above,

the next step is to retrieve it. As was predicted, retrieval of whole table was simple, and

each record could also be retrieved separately. This process is discussed in detail below in

Section 3.

(c) Access Request. If the Adept application assigns the item

of interest to a variable, an Access basic function was able to perform tasks which

requested the value of that variable from Adept, placed it into an Access variable, and then

stored that variable into another temporary table. This is also discussed in detail below, in

Section 3.

(3) Results. While each one of these processes worked

independently, they did not work correctly in sequence. First, Adept calls Access and

81

executes a macro. This macro then executes a function containing the DDE commands

inside, among others, which in turn open a channel with Adept and run the same

DDERequest command which had already been tested. This time, when this function was

executed from Access, it did not perform correctly and Access could not get Adept to

respond. This problem is also covered in more detail in Section 3 below.

3. Implementation Specifics

The Adept side of the interprogram communications is contained in a

"combination node," which is the combination of two custom nodes and one display node.

This combination node is shown in Figure F-1. The Access side is contained in several

different structures: macros, functions, tables, and a query. The implementation of

specifics on both sides, with respect to the methodology in the fourth approach discussed

above, are provided below.

a Node Number from Adept to Access

The Adept node contains a script in which the item of interest, the node

number, is placed into the variable Node. The node number is directly related to the

expert system conclusions, which are shown in the knowledge representation provided by

the experts. This script also contains statements which open a DDE channel to the Access

application and then execute a macro, as discussed above. The script which performs

these fimctions is shown in Appendix F, Section C-I (Part I).

The Access macro, executed through the DDE command by Adept, uses

the command RunCode to execute the Access Basic function GetNodeo. This function

first opens a channel to Adept, and then requests the value of the Adept variable Node,

from the Adept application using the DDERequest function. As mentioned in Section

A. L.(a), above, the item in this request must be using syntax recognized by the server

82

application, in this case Adept. The GetNode0 finction and DDERequest syntax is

shown in Appendix F.

The temporary Table 1NX is used to store the value of Node. Access

Basic commands in GetNodeO delete the previous value and add the new value to the

INX table, close the table, and then terminate the channel.

&. Part Information Records from Access to Adqut

First, a "Make Table" action query is used to retrieve the required

information into a temporary table, and then Adept requests the information contained in

that table. Ideally, the macro which performed the RunCode action in the previous

section would then perform the OpenQuery action which executes the query. These tests

were not performed in this manner since the program halted in the GetNodeO finction

and the query would never have been executed.

(1) Part Information Query by Access. Initial tests of this function

were performed by manual input of a value of Node# into the lNX table. The function

which performs this task, MakeTableO, executes three macros: WarningOff,

LNewTxQuery, and WaruingOn. The WarningOff7 WaningOn combination is used to

suppress warning messages which occur when the query overwrites existing records. In a

procedure such as this, the warning messages would either hang up communication at

worst, or annoy the user unnecessarily at best. Since the user does not need to know what

is happening, it is best to suppress messages after the functions generating them are well-

tested.

The 1NewTxQuery macro performs one task; it performs an

"OpenQuery" action on the Query IXQ, thus executing it. This query is an action query

which is performed on the 1NX, NODE-REPL, and REPLACEMENT tables. Since 1NX

contains only one value, this query finds all matching instances of REPLACEMENT by

83

the relationship between NODE# in the first two tables and UD# in the second and third

tables. In addition, since this is a "Make Table" type of action query, it places the selected

records into a table which is named NEWTX.

(2) Information Request by Adept. The second part of the custom

node retrieves the information from the table created with the macro used in the previous

node. After a channel was opened, each record in the temporary table was retrieved using

the DDE command Request. With respect to a table, Request can be used with

arguments such as "FirstRow," which requests the first record in a table; "NextRow,"

which requests the next row in the table; "FieldNames," which returns the names of the

fields in the table; and "All," which returns the entire table including field names. In this

case, after the first record was requested, up to three other records were also requested.

This script works for up to four replacement parts, a number selected because currently

the data only shows nodes which require one, two, or three related records. Currently,

expert system nodes only required three records.

This request and display are awkward at best, because

programmiaig techniques used with arrays could not be used by Adept scripts. If records

could be counted, a loop could be used with a counter, vice the fixed values. Since there

was no simple way to count the number of records, "flag" values were used, such that if a

variable still contained the flag value, a record had not been assigned to that variable.

These flag variables were used in a series of "If ..then" statements to determine how many

records or "Rows" had been retrieved from Access.

C. Display of Part Information to User

The purpose of then second Adept node and its script is to format the

information retrieved from the database. If Access records stored data in fixed sized

fields, it would not be necessary to change the format before it is displayed. In fact, the

84

entire table, field headings and all, would have provided an effective and relatively quick

way to display the information. Access however, stores each field in only the amount of

space required by the data it contains; that is, if a field does not contain any information it

is stored in the minimum amount of space, and if a field contains a long data item, then it

takes up more storage space. This creates a problem when several records are listed one

after another since the fields will not line up vertically, unless the data for a field just

happens to be the same size. Each field is also separated by <CTRL><TAB>. An

example of what this would look like is provided in Figure 21, below. In a word

processor, it might be possible to get the fields to line up, if tabs were correctly placed, but

the Adept display did not have that capability so a different method had to be used.

UM PiW AM t •3af Niow

41MA2-W4 SON" 4A2IA-W43 SI014-7A.hI WOJ (A2CDMAuSE3MLY)

4MlA2.UARNUASSMWdDY 577268 MAI-UAW44NsASUMLY SN-14.7ASH AW&EAV7 ILUCMN

41MAIAS-W 50812 4AIAS-VIM SIS-14-7,l SW Ul=ON= CA=

Figure 21 - Records Retrieved 3

First, the "*" character was added in a field at the end of each record as

a record end marker. This allowed the length of each record to be determined by finding

the "*" character and using the "Length" function. The record was also put into a text

variable using the "GetSubText" function. Next, the value of each field is determined by

finding all characters before the first <CTRL><TAB> combination. "FindText" finds the

length of this field, and then "GetSubText" gets the contents of the field by using the

arguments (record variable, start (offset), and ending (offset)). After the first field in the

record variable is determined, "GetSubText" is used to get everything remaining and

3 This display is an example of what the display would look like if the entire table were
retrieved, except the * field would not be required.

85

assigns this to the record variable. At this time, the process repeats, since now the second

field in the record is the first field in this variable. This continues until the values of all five

fields for each record is placed into a separate variable. Since these fields are still of

various lengths the best way to display them is in a vertical (left justified) manner. This is

shown in Figure F-2, Appendix F. The script used for this is shown in Section C-1 (Part

1), Appendix F.

This above methodology is extremely contrived and extremely inflexible.

In addition, the performance is very slow when there are several records.

C. FINAL RESULTS

This section primarily applies to the fourth approach, but some of the "lessons

learned" came from other approaches as well. After abortive attempts to execute an

Access function, it was discovered that DDE can not directly use several commands, such

as RunCode. Macros can not be used directly, because the DDERequest function can

only be executed from Access Basic procedures. Therefore, Adept can execute a macro,

which uses the RunCode action to execute an Access Basic procedure. In the fourth

attempt, this procedure contains statements which perform a DDERequest to Adept,

requesting the value of the variable Node, which contains the node number about which

the user requires information.

If this procedure is executed from Access, there was no problem; Access

could indeed retrieve the correct Node value (assigned by an Adept node) and place it into

an Access variable, which could then be put into a table. The code required to perform

this task is provided in Appendix F, Section C. It could not, however, be executed from

Adept. The Adept application performed a DDE execution of the lTestDDENodeReq

macro, which instructed the Access application to make a request. When that request was

made, the Adept application did not respond back to Access, and the process "timed out."

86

It appears that once an Adept application makes a DDE request from an application, it

ceases to listen for other requests. At this time there is no explanation for this problem,

and Softsell Product Support personnel are looking into a solution or a way to work

around this anomaly.

One other possible solution was briefly explored, by using an alternate Adept

procedure as a third-party. There were two ways to approach this, and both were tried.

One was to have the MK92 FCS MAES (or the test application) call a second application

running in the background. The main application would tell the second application to

"call" the Access application, which would then request the value of Node from the main

application. This met with similar results as the first trial, that is, either one application did

not recognize the other or the process did not execute properly and "timed-out." One

other possible solution would be for the Main Adept application to send the Node number

to the secondary Adept application, and have Access request the information from the

secondary application, which should be "listening" for requests since there were no

outstanding requests of its own. Initial trials with this methodology did not produce

successful results since attempts to put Node into a static (one not being operated on by a

user) procedure did not work.

Part of this research was successful, since establishing certain types of one-

way communications was fairly effective. Possible uses for DDE should be explored in

future applications, however DDE can not be relied on to solve all interface problems,

since there appears to be no consistent implementation of DDE even within Microsoft's

own programs let alone with third-party vendors. OLE 2.0 may be more capable and

combine some of the benefits of both DDE and OLE to provide an interface between two

programs, not just for display of objects, but for actual use and manipulation of them by

the client application in addition to allowing changes from the server application. Until

87

OLE objects can be recognized as text strings, vice as something else, it will be difficult to

use them in databases for query purposes when the user input will generally still be in the

form of text.

Other possible solutions to the Adept - Access application interface problems

are discusse in Chapter VL

88

VL LESSONS LEARNED AND CONCLUSIONS

This project established the viability of developing a separate database that inter-

faces with the MK92 FCS MAES and can be used as a stand alone application for tracking

and maintaining Parts and other information. In this chapter, the feedback provided by the

project sponsors concerning the functionality of the prototype database application is

discussed. In addition, requirements for follow-on work for both the interface between

the MK92 FCS MAES and the database application, and the stand-alone run-time and

administration versions of the application are presented.

A. SPONSOR FEEDBACK ABOUT PROTOTYPE

Feedback from sponsors concerning the prototype database application fall under

four categories: Expert System Interface, Parts Supply Information, Usage, and Database

Maintenance. Each or these categories are discussed below.

1. Expert System Interface

a. Acknowledged Communication Problems

As previously mentioned, there are problems with the using DDE for

interprogram communications with the current versions of Adept and Access. The spon-

sors acknowledged these problems, as well as the probability that other possible solutions

may not provide a seamless interface as was hoped. The main problem with alternative

solutions is that it is unlikely that the interface between the two programs will be transpar-

ent to the user, and may actually require user input for information retrieval instead of be-

ing totally "automated."

k Performance Issue

Due to the slow performance of Adept in displaying an Access table in

an effective manner, further pursuit of the Adept-Access DDE interface may not be of any

value. If another DBMS software program were known to be more capable of performing

89

- -

the required DDE functions and could store data in fixed length fields, the overall per-

formance would probably be acceptable. Since, however, the DDE performance of other

DBMS software is still unknown, it is more beneficial to look at other interface methods.

2. Parts Supply Information Subsystem

While both sponsors and shipboard technicians indicated that parts informa-

tion is a highly desired feature, some record format changes would be more beneficial.

Technicians do not necessarily have a supply of spare parts, therefore keeping track of in-

ventory is not really required. The sponsors however, felt they could use an inventory

system at their site. This system would be used to keep track of parts they receive from

decommissioned ships and would be distributing to other ships at no cost, since the parts

are not in the actual supply system. Slight changes to existing forms and tables could be

made to provide this capability, as well as perhaps an additional table to track requests re-

ceived from ships Changes to the forms, reports, and processes available to the techni-

cians will not be significant and will merely simplify those which already exist.

3. DB Maintenance Subsystem

While there is still discussion concerning the finctionality of this system, and

what items of data users would be able to change, the need for users to maintain at least

some of the data is a desirable feature. When this feature is implemented, password

protection should provide security within the application to prevent inadvertent damage.

4. Usage Subsystem

While there is value in obtaining usage data from the users for future use by

management, this may be outside the scope of the application's actual requirements.

5. Administrator and User Interfaces

The separation of Administrator and User menus and functions was recog-

nized as being a good idea. Non-programmers may be doing the bulk of data store main-

90

tenance with respect to this system, and may be responsible for updating data stores and

providing updates to the user. Providing extra capabilities for the administrator will

facilitate overall system maintenance while keeping the user interface as simple as possible.

B. DIRECTION OF FOLLOW-ON WORK

Follow-on work should continue the investigation of a viable method for accessing

the database from the expert system. It would also implement changes suggested by the

program manager and complete the implementation of several maintenance related

functions which were not completed in this thesis.

1. Expert System - Database Interface

One possible way to provide an expert system - database interface is to pro-

vide the user with the capability to use the database directly to retrieve the required infor-

mation. This might be achieved by using an icon activated program which first opens

Access to the required screen through the use of a macro, and then begins the Adept pro-

gram. In this approach, both Adept and Access and applications will be running simulta-

neously. The user, however, will only be seeing the Adept screens, since they generally

will be in the foreground. In order to retrieve information about a required replacement or

part, the user could invoke a process to provide direct manipulation of the database.

If this process could "minimize" the Adept window, the Access wiudow

would then be visible to the user. At this time, the user would have to make an entry in

order to retrieve the correct information. This would accomplish "manually" what this

thesis tried to automate through the use of DDE. Perhaps Node# would still be a good

argument for the query even though it is not particularly meaningful to the technician, be-

cause it is short and fairly easy to remember (vice UD#s which are difficult to remember).

Using Node#s would allow the current database structure to be used in retrieving all ap-

plicable information about Parts and Replacements, instead of about one UD# at a time.

91

The display form would use a command button to invoke a procedure to maximize Adept

and put Access back in the background until needed.

2. Database Application Functionality

As mentioned above, the functionality of each of the different subsystems re-

quires a number of changes. Follow-on work will complete the planned functionality,

which still remains a requirement, particularly in the area of maintenance, and will make

other changes as requested by the sponsor. The sponsors have expressed an interest in

adding the capability to track excess parts which are distributed to ships. This may require

additional tables tc track the requests from particular ships for particular parts.

3. Database Application Environment

Once the application is complete, the database environment has to be made

secure. Generally, the run-time environment does not allow the user access to objects;

however, a user could inadvertently halt processes or cause problems if care is not taken

to fix some of the current loopholes. Error-trapping routines need to be added to ensure

there are no abrupt terminations of the application. Customized help files may be added,

and would prove useful. (Perschke and Liczbanski, pp. 295-296)

4. Documentation

Documentation for both the user and the administrator should be completed.

This thesis provides the foundation for some of the system documentation, but updates

will be required as the system changes. In addition, this thesis does not provide a User's

Manual, since this is only the first generation prototype of this system.

C. LESSONS LEARNED

1. Database Selection

Using a database which supported fixed fields would have solved some of the

problems and performance issues associated with the display of information retrieved from

92

the database by Adept. This may be a moot point, however, if no database can accept a

query parameter passed from Adept.

2. Application Development

More interface with the user would have been helpful. A great deal of time in

developing this system was spent in researching the interface between the expert system

and the database and in attempts to get it working, rather than specifying the functionality

of the system precisely. It should be pointed out that even if the nature of some of the

prototype's processes and forms change, most of the existing objects and processes could

be used with little modification.

D. CONCLUSION

This thesis proved the viability of using interprogram communicationbetween a

database and an expert system to enhance the functionality of the expert system and to

help the users save time spent looking up related information manually. Database vendors

are working to standardize interprogram communications as users demand the capability.

New releases of both Adept and Access are expected to provide capabilities which may

solve many of the existing problems. Insights gained in this thesis can be used as a model

to develop approaches for other attempts at interprogram communications.

This thesis is a typical example of the problems and issues faced today in the soft-

ware development environment when trying to get different vendor's software to commu-

nicate with one another. This sort of interprogram communications has been one of the

most difficult problems to solve, and will continue to be so, as long as adherence to any

sort of communication protocol standards is not demanded by the users and/or application

developers.

93

"APPENDIX A - ENTITIES, ATTRIBUTES, AND ENTITY-
RELATIONSHIP DIAGRAM

A. ENTITY DEFINITIONS AND ATTRIBUTES

NODE Entity
NODE#; node-number
MODULE REF; module-refeence

REPLACEMENT Entity
UD#.circuit-card-location-ref

PART#; part-number
ALT LOC; alternate-location
NOTES; replaement-notes

PART Entity
PART• part-number
NSN; stock-number
PRICE; part-price
ALLOWANCE; part-allowance
PARTS ON HAND; parts-on-hand
PARTS ON ORDER; parts-on-order

NODE-REPL Entity
node-munber

Scircuit-card-location-ref
CKT REF; circuit-referece

USAGE Eniy
Susag-number
DATE; usage-dat
PART REPLACED; part-replaced
NOTES; usage-notes
(Othbs TBD)

denotes key antrbute of entity

94

B. AWRIBUTE DEFHNITIONS

alternate-location
Text 25
Location (UD#) where same part may be found in system

circuit-card-location-ref
Text 28
UD# or other reference information for replacement part

circuit-reference
Text 27
Documentation reference

module-reference
Text 20
Reference number on knowledge diagrams

node-number
Text 6, Mask N####, # any digit
Artificially generated number used to track nodes

part-allowance
Integer
Number of a part allowed on board (COSAL or other requirement)

part-number
Text 20
Reference number for part

part-replaced
Boolead
Set if part replaced

parts-on-hand
Integer
Number of a part on board

parts-on-order
Integer
Number of a part on order

95

price
Currency
Price of part

replacement-notes
Text 32
Information for user

stock-number
Text 15
National Stock Number (NSN) for part

usage-date
Date
Date of usage

usage-notes
Memo
Information about usage

usage-mnmber
Text 6, Mask UI####, # any digit
Artificial number for usage occurrence

96

C. ENTrITY-RELATIONSHIP (E-R) DIAGRAM

NODE REPLACEMENT

HSHAS hSHAS

m Id

NODEtEPLPARTUSAGE

FIGURE A-I

97

APPENDIX B. DECOMPOSITION AND DATA FLOW DIAGRAMS

1IK92 FCS MIAINTENANCE AUISOR DECOMPOSITIOH DIAGRAM
EXPERT SYSTEMI DATABASE

DS

1.9 2.8 3.0
PART DATA STORE SYSTEII
ItFO AINTENAE USA
SUBSYSTEM SSYSTE SUBYSTE

Figure B-i - MK92 FCS MAES DB Decomposition Diagram

98

M192 PCS MAINTENANCE ADVISOR DECOMIPOSITION IOAGRAM
EXPERT SSI DATABASE i.

i.e
PART
IwFO
SUBSYSTEM

1.1p 1., 1.3
eim I UPDATE REPORT
PART SUPPLY PART
I STATU INFO Iwo

NOT ON PARTS ON PARTS SYSTEM
HAND UNC D~ER PARTS
REPORT REPORT STOCK LIST

L REPORT

FN MCTION AVAILABLE ONLY TO
SYSTEM ADMIINISTRATOR

Figure B-2 - MK92 FCS MAES DB Decomposition Diagram [1.0]

99

MOT SYSVW OR 2.6

2.0

RAM WO' COY "Rua cO

"MO~Toa wpmm MW T WELDI
I(BY (W V N 3)ay~

3713 (BY LID

P FCTIO4 mMILOU OILY To

PMT P~ PWT & T8.
Iwo f

Figure B-3 - MK92 FCS MAES DB Decomposition Diagram [2.0]

100

K192 FCS MAINTENANCE AOUISOR DEC 1IOSITION DlG• M~R

EXPERT SYSTEM DATABE 3.0

3.8
SYSTEMl

DATA

SUBSYSTEMI

3.IP 3.2

_ w
DATA DATA

3.2. 1P 3.2.2P

Figure B-4 - MK-92 FCS MAES DB Decomposition Diagram [3.0]

101

WtS2 FCS A114TENACE ADVISOR
EXPERT SYSTEMI DATABASE

CONTEXT DIAGRAM

EXPERT HOOE REMUEST

ST
T E MYT '

DINFREUSEDMIC IAT W
PSIEO

R INF

Figure B-5 - MK92 FCS MAES DB Context Diagram

102

MIM FCS MAIMTENANCE AWIS(W
Exporr SYTEM OATASASE

SYSTEM ol

T11"IcIft LWAL PART Impro PART MAILS

WSR) INFO

------- & SUOSYSTE" PART SUPPLY

10 Pam OJIPLY two STATUS WTAILS

REPLACEMENT
SYSTEM PART two

EM it
SYSTEM
Ao"IN

SYSTEM MAINT
two

RM MOUNT
INFO

OIINT IWO

kINT two

SwWwSm
"WE MAIM Dro

(USER) LOCAL MINT
two NN==

PONT "AtHr
Oro

ORTS

3.0
SYSTEM
USAM
SUN"M U Wý= I NMP 0

4946 FAM N INWPO USOCK

Figure B-6 - MK92 FCS MAES DB System Diagram

103

STATUS INQUIRYtwDEAL

4~ PART STATUS
DETAILS

PART UPPLYPART DETAILS

UPDATETE

SASTREMPORTS 1.3RT

Figure B-7 - DFD: Part Info Subsystem [1.0]

104

WD - REPORT PART IWO E1.33

1. 3. IP
NOT ON
HAND
REPORT

NON RELATED UDs
PART NON T

NON PARTOS
IPART

1. 3.2P
TECHNICIAl PART ON 00 REPORT PARTS ON
(USER) m CNN

- REPORT E] REPLACEMENT

r ON ORD
RELATED

UDs

PARTS UNDER
STOCK REPORT

1.3.3P ON ORDER PART DETAILS
PARTS
UNDO
STOCK go
REPORT

SYSTEM

FADMIN
UNDER STOCK PART*S

PART

SYSTEM
ltý 1.3.4PH SYSTEM PARTOS

SYSTEM
PARTS
LIST SYSTEM PART =WLACMENT

RELATED UDs

Figure B-8 - DFD: Report Part Info [1.31

105

WD DATA STON MINTENAA=
SLft-mf" E2.03

Hm RE"TO
IWL WTAILS KPLAM"Dr

sysm "m
MINT IWO

sysm nAIWTEMAHM mm
$WIN Nm "Alml OEIAAI.5

Now FELOTM " WiAlLs
"m NELATM H-R ml

LOM mm N=-F"L
MINT Iwo

UP NELATO HWE WTAILS

UD HAIWT
MAILS

PONT

UD N"TO PW WTAILS

TICHNIC10CUM) (w) MINT W04"lw m"TO PW

LOM UD
MINT Iwo

SYSM UD PART
MINT Iwo

MINT WTAILS

V""" tff IWJ)
I ý MXNT OET:IUST

sysm PA"
MINTewmm

MCI& REPL
10, PW. MATO

PW N-R WTOULS
MINT IWO

PART RELATO UD OETAI"
PORT

MINT Iwo

7umicam
CUM)

Figure B-9 - DFD: Data Store Maintenance Subsystem 12.01

106

OFID NODE MAINTENANCE CZ. 13

VAPL UPDATE
DETAILS 4=WLm-mEwT

svwm MODE/W
CHANCES 2. 1. 1P NODE UPDATE

UPDATE MM MYRILS
ADMIN As Iwo

By "me NODE

TE
DETAILS

LOCAL NOOLIUD
CHANGES WCOE-REPL

WA CHANCE
2.1.2P DETAILS
CHANCE

NODE
CHANGED NDOE*

8VSTEM HQOt# NEW NODE

CHANGES DETAILS

3p

NODE

DETAILS

svrm
MOM HOME

ORLETID HGOB9 OKLlMO NOW
DETAILS

DEA-M
mom

ASK

UO A0010 TO NOCE

WME4wpL

TEMICTO LOCAL UO ADD UO

(IM) ROOM TO NODE TO NODE MUACVWffMY MM) ADD CHOCK fort.

------------- mom UO *-R
LOCAL DELSTED UD
MOM MM)

2.1.0p

FROM NODE
AMIN coy HOW) HOME-RKPL

OVA"ro UO DELETED W
(FW HODE)

FigureB-10-DFD: Node Maintomce [2.11

107

DFO - REPLACEMENT (W)
MAINT [2.21

SYSTEM LIDAWT 2.2. 1P

SYSTEM CHANGES CHANGE PART BY LID CHANGES

ADMIN' REPLACEMENT
Iwo PART

By UD*

REPL CHANGES

LOCAL LID/PART
CHANGES REPLACEMENT

L CHANGES:>OW4GES2.2.2P LID CHANGES

TECHHICIAF CHANGE UD*
(USEIRV

LOCAL LID TO CHANGE
UDS RELATED
H-R CHANGES

SYSTEM LID
TO CHANGE PART

(AM PARTS)

2.2.3P
SYSTEM ADD LID FOR

ADMIN TO MODES HEN LID

(By LID) ýMM-REWPL

LID TO ADO
W/NODES

MEN LID DETAI
REPLACEMENT

LID TO DELETE DELETED LID

w NODES 2.
DID w
FROM NODES
(BY LID) NODE REPL

'--;;;;S FOR
DELETED LID

Figure B-1 I - DFD: Replacement (UD) Maintenance [2.2]

109

2.3. 1P PART
SYSTEM SYSTEM PART CHANGE CHANGES
ADMIN CHANGES PART

Iwo ýPART

LOCAL PART
CHANGES

ENT

2.3.2P ENT
TECHHICIAI CHANGE PART*
(USER) PART* CHANGE

i MAI PARTO PARTS
CHANGES CHANGE

SYSTEM PART*
CHANGES PART

DELETED
PART

SYSTEM DELETED 2.3.3P
SYSTEM PART# DELETE
ADMIN PARTS

UDs DELETED REPL =WLACEMENT

W/ PART

SYSTEM AM PARTS
IPART

2.3.4P ADDED PART
TECHNICIAF AM
(LIM) PARTS

LOCAL AM PARTS

Figure B-12 - DFD: Part Maintenance 12.3)

109

......

OFO - SYSTEM USAGE
SUBSYSTEM [3.03

S3.1IP
ENTER
USG USAGE DETAILS INPUT
DA.. ITA

TECHI44CIO*

(U E) /L O C A L U S A GE IR E P O R T S U A E R P R E A L

Figure B-13 - DFD: System Usage Subsystem [3.0]

110

DF'D - REPORT USAGE DATA E3.23

S3.2.1P

PERIODIC

TECHNICIAF . DETAILS
(USIER) I:EOTPERIODIC USG

3.2.2P •

DETAILS

Figure B-14 - DFD: Report Usage Data [3.2]

APPENDIX C - MENU HIERARCHY AND SCREENS

A. MENU HIERARCHY

References to Decomposition Diagram are provided in {)

USER MENU
Part Information (Part Info) Submenu (1.0)

Browse Part Supply Info (Supply) (1. IP)
Update Part Supply Status (Update) {1.2P)
Part Information Reports (Report) Submenu (1.3)

Report Parts Not On Hand (Not on Hand) {1.3.1P}
Report Parts On Order (On Order) {1.3.2P)
Report Parts Under Stock (Under Stock) {1.3.3P)

Usage listory (Usage) Submenu (3.0)
Enter Usage Data (Enter) (3. 1P)
Periodic Usage Report (Periodic) (3.2.1P)
Annual Report (Annual) (3.2.2P)

DB Maintenance (DB) Submenu (2.0)
Update Circuit Card Info (Ckt Card) Submenu <2A>

Select By Node# (By Node#) (2.1.1 P)
Select By UD# (By UD#) (2.2. IP)

[Change UD#] {2.2.2P)
Update UDs (Submenu) <2B>

Add UDs to Nodes (Add) Submenu <2B-I>
Select by UD# [Add New UD] (2.2.3P)
Select by Node# [Add New UD](2. 1.5P)

Delete UDs from Nodes (Delete) Submenu <2B-2>
Select by UD# (2.2.4P)
Select by Node# (2.1.6P)

Update Part Info (Part) Submenu <2C>
Update Info by Part# (2.3.1P)

[Change Part#] (2.3.2P)
Add Parts {2.3.4P)
Delete Parts (2.3.3P)

ADMINISTRATION MENU
Part Information (Part Info) Submenu (1.0)

Browse Part Supply Info (Supply) (1. 1P)
Update Part Supply Status (Update) (1.2P)

112

Part Information Reports (Report) Submenu (1.3)
Systems Part List (Parts List) { 1.3.4P)

DB Maintenance (DB) Submenu (2.0)
Update Circuit Card Info (Ckt Card) Submenu [2A]

Select By Node# (By Node#) {2.1.1P)
[Change Node#] (2.1.2P)

Select By UD# (By UD#) (2.2. IP)
[Change UD#] (2.2.2P)

Update UDs (Submenu) [2B]
Add UDs to Nodes (Add) Submenu [2B-1]

Select by UD# [Add New UD] {2.2.3P)
Select by Node# [Add New UD] (2.1.5P)

Delete UDs from Nodes (Delete) Submenu [2B-2]
Select by UD# (2.2.4P)
Select by Node# {2.1.6P)

Update Part Info (Part) Submenu [2C]
Update Info by Part# {2.3.1P)

[Change Part#] (2.3.2P)
Add Parts (2.3.4P}
Delete Parts {2.3.3P)

Node Info [2D]
Add Nodes (2.1.3P)
Delete Nodes (2.1.4P)

Usage History (Usage) Submenu (3.0)
To Be Determined

[]Additional functions provided on screen, vice on menu
o Combination menus referenced in Process Logic section (Appendix D, Section A)

113

B. MENU SCREENS

MK92 FCS MAES Database

MK 92 FCS Maintenance Advisor Expert SystemI ~Database

User Version Administrative Version

Exit Program

Figure C-1 - Opening Menu

MK92 FCS MAES D0 Main User Menu

[MK 92 FCS MAES Database

-pr Inkmaion
ISystemn Usage Historical Data I-........ D aintenance

-i Databaseý

Figure C-2 - User Menu Screen

114

Part Information Menu

IMK92 FCS MAES DB - Part Information-]

" Supply Infomation for Pait

Vpdate Part Supply Status

rart Information Reports

-eur toMainMenu

Figure C-3 - Pant Information Subnmen

Part Repart Menu

IMKS2 FCS MAES DB - Pard Informatio~n

Part Reports I

r C3 -Parts Not an Hand

tPats On Order-tPelts Under Allowance Level

Retunm to Part Information Menu

l~eur t MinMenu

Figure C4 - Part Reports Submenu

115

Usage Menu

IMK92 FCS MAES Usag. Data

Enter Usage knfrmation

SI•'F ' ° IR;e-portt Usage Data

l~nual Data Report and Archiv

-eunt Man Mnu

Figure C-5 - Usage Submenu

116

DO mehfnennce Menu

NK92 FCS MAES Database Maintenance

jUpdate Ckcut* Card/Node Information

MUDs tolDelate UDs from Nodes

*date Part ki*matio

]Fig=r C-6 - DB Maintenance Subnmen

SelectTyp osfChange

Select Type of Change Required to
Circuit Card I Node Intormalion

Suled Bv Nda

Doaxwtatio Refsen..

NODE# UPDATEI

- ~Retiw to Pm~iots Meom

Figure C-7 - Update Selection Screen

117

I2

MK92 FCS MAES DO Main Admim Menu

MK92 FOS MAES Database - Administrtv~e Versýion

Pystem Usaep Hstorical Date

- atPabase MaiWenanc

Figure C-8 - Administrator (Adniin) Menu

Part Infrination Menu - Admin

MK92 FOS MAES DB - Part Infbrmation (Admin)

mws-e Part Supply Imnfortion

Fpdat Part Information

al Ifomation Reports

Figure C-9 - Part Infobrmation, (Admmn) Submenu

Part Report Menu - Admin

IMK92 FCS MAES DB - Part Information (Admin)

Part Reports

"Parts in System vd UDs

- etumr to Part k~fomation Menu

Figure C- O - Part Reqpt (Admin) Submeau

119

DB Maint Menu - Admin

IMK92 FCS MAES Database Maintenance- Admin

pdats Circuit CardMNode Information

-d UDs toiDelete UD. from Nodes

U Idate Pat Inbomation

MNodes to Delete Nodes from System

--I

SRetur to Mainou MenuI

Figure C-1I - DB Maintenance (Admin) Submenm

Select Type of Can e - Admin

Select Type of Change Required to
Circuit Card I Module Information

Jwams, ane a Cenet

- I~Nodma. Putt Alt Locatiomn.
IDocizongnakon Refuimnce.[Na.. NO D# UPDATE)

Select I UED- UDII.PuI. Alt Location. Doc.
jRdmnoe Notes_ _

(NO NODE#I UPDATE]

- Rattan to Pteviaou Marku

Figure C-12 - Update Selection (Adinin) Screen

120

"APPENDIX D - PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS

A. PROCESS LOGIC

Program START
Activate OPENING MENU procedure

OM OPENING MEN: (procedure)
Activate OPENING Menu - Display Men

On Command Button Push, Run procedures
(USER MENU, ADMEN MENU, EaT)

1. User Procedures

UM U]&•,.fl: (procedure)
Activate USER Menu - Display Menu

On Command Button Push, Activate procedures
(ART IWO MENU - USER, USAGE HISTORY MENU, DB MAINT

MENU -USER, E•ar)

U1.0 PAR.T 0 M --U R (procedure)
Acvate PART nWO - USER Menu - Display Menu

On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU -

USER, RETURN)

U1.1 SUPPLY: (procedure)
Activate BROWSE PART form
Input PART# from list selection

On Command Button Push, Activate subprocedures
(LOCAIT., CANCEL)

UI.IL LOCATE: (procedure)
Activate PART SUPPLY INFO form

Retrieve PART instance WHERE PART# = Form[BROWSE
PART][PART#]

Display PART instance
On Command Button Push, Activate subprocedures

(RETURN)

121

U1.L-R RETURN: (procedure)
Close PART SUPPLY INFO form
Activate USER MENU procedure

U1.IC CANCEL: (procedure)
Close PART SUPPLY INFO form
Activate PART INFO MENU - USER procedure

U1.2 UPDATE SUPPLY INFB: (procedure)
Activate UPDATE PART form

Accept PART#
On Command Button Push, Activate subprocedures

(LOCATE(U), CANCEL(U))

Ul.2L LOCAQM: (procedure)
Check to see if Part# input provided and it exsts

if not, display message and Activate UPDATE SUPPLY INFO
procedure

Retrieve PART instance WHERE PART# = Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures
(MORE, RETURN(L), ISSUE, ORDER, RECEIVE)

U1.2L-M MWORE: (procedure)
Update PART instance WHERE PART# = Form[PART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY IiFO UPDATE form
Activate UPDATE SUPPLY IWFO subprocedure

U1.2L-R UETIMR=L) (procedure)
Update PART instance WHERE PART# = Form[PART SUPPLY

INFO UPDATE] [PART#]
Close PART SUPPLY INFO UPDATE form
Activate PART INFO MENU - USER procedure

U1.2L-. ISSUE (procedure)
Activate ISSUE PARTS form
Set initial number of parts issued to 0
Accept update to number of parts issued
On Command Button Push, Activate subprocedures

(UPDATE(1), CANCEL(I))

122

U1.2L-IU UPDATEM(f: (procedure)
Calculate number of parts on hand: Subtract number of

parts issued from number of parts on hand
Close ISSUE PARTS form

U1.2L-IC CANCEIM: (procedure)
Close ISSUE PARTS form

U1.2L-O ORDER (procedure)
Activate PARTS ORDERED form
Set initial number of parts ordered to 0
Accept update to number of parts ordered
On Command Button Push, Activate subprocedures

(UPDATE(O), CANCEL(O))

UI1.2.OU][D]•A.O)Q: (procedure)
Calculate number of parts on order: Add number of parts

ordered to number of parts on order
Close PARTS ORDERED form

U1.2L.OC CANCL(IQ: (procedure)
Close PARTS ORDERED form

U111.LR BE JM (procedure)
Activate PARTS RECEIVED form
Set initial number of parts received to 0
Accept update to number of parts received
On Command Button Push, Activate subprocedures

(UPDATE(R), CANCEL(R))

U1.2L-RU DATFM (procedure)
Calculate number of parts on order: Subtract number of

parts received from number of parts on order
Calculate number of parts on hand: Add number of parts

received to number of parts on hand
Close PARTS RECEIVED form

U1.2L-RC CANCEU): (procedure)
Close PARTS RECEIVED form

U1.2C .A, LUCI1
Close UPDATE PART form
Activate PART INFO MENU -USERL procedure

123

U13• REPORT PARTS INFO MENU - USER: (procedure)
Activate PARTS REPORT MENU - USER form

On Command Button Push, Activate subprocedures
(REPORT PARTS NOT ON HAND, REPORT PARTS ON ORDER,

REPORT PARTS UNDER STOCK, PREVIOUS (RPU),
RETURN TO MAIN(RRU))

U1.3.1 REPORT PARTS NOT ON HAND (procedure)
Query PART for PARTS NOT ON HAND:

Select Part#, Number Parts On Hand WHERE
Number Parts On Hand = 0

Query PART and REPLACEMENT for UDs FOR PARTS NOT ON HAND:
Select Part#, UD# WHERE Number Parts On Hand = 0

Display PARTS NOT ON HAND report from PARTS NOT ON HAND
query

Display PARTS NOT ON HAND subreport from UDs FOR PARTS NOT
ON HAND query

WHERE PART# for PARTS NOT ON HAND subreport = PART# for
PARTS NOT ON HAND report

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **

** Note: these are Access procedures, and are not covered further

U1.3.2 REPORT PARTS ON ORDER (procedure)
Query PART for PARTS ON ORDER.

select Part#, Number Parts On Order WHERE
Number Parts On Order > 0

Query PART and REPLACEMENT for UDs FOR PARTS ON ORDER:
select Part#, UD# WHIERE Number Parts On Order > 0

Display PARTS ON ORDER report from PARTS ON ORDER query
Display PARTS ON ORDER subreport from UDs FOR PARTS ON ORDER

query
WHERE PART# for PARTS ON ORDER subreport = PART# for

PARTS ON ORDER report
On Command Button Push, Activate procedures

(CANCEL, PRINT, ZOOM) **
** Note: these are Access procedures, and are not covered further

124

UI1.33 REPORT PARTS UNDER STOCK (procedure)
Query PART for PARTS UNDER STOCK:

select Part#, Allowance, Parts On Hand, Parts On Order WHERE
(Number Parts On Hand < Allowance)

Display PARTS UNDER STOCK report from PARTS UNDER STOCK
query

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **

*Note: these are Access procedures, and are not covered

U1.3P PREVIOUS(RPUf (procedure)
Close PARTS REPORT MENU - USER form
Activate PART INFO MENU- USER procedure

U1.3R RETURN TO MAIN MMRU) (procedure)
Close PARTS REPORT MENU - USER form
Activate USER MENU procedure

U1.OR R&TUR=
Close PAAT INFO - USER menu
Activate UMi7. ,4ENU procedure

U)- ,3 DB MAINT MENU - USER (procedure)
Activate DB MAINT - USER Menu - Display Menu

On Command Button Push, Activate procedures
(CKT CARD(U), UD(U), PART INFO(U), RETURN(DU))

U2.A CKT CARDIM (procedure)
Activate SELECT CHANGE Menu - Display Menu

On Command Button Push, Activate procedures
(BY NODE#(U), BY UD#, RETURN)

U2.1.1 BQY NODE#(U. (procedure)
Activate INPUT NODE# form
Accept Node# input

On Command Button Push, Activate procedures
(CANCEL(NU), LOCATE(NU))

125

U2.1.1L JOQAFAM (procedure)
Retrieve NODE, NODE-REPL, and REPLACEMENT instances

WHERE Node# = Form[INPUT NODE#][NODE#]
Check to see if Node# input provided and it exists

if not, display message and Activate BY NODE# procedure
Activate UPDATE NODE-REPLACEMENT - USER forms
Display NODE instance and first NODE-REPL and REPLACEMENT

instances
Accept changes to Node and Replacement information

On Command Button Push, Activate procedures
(CLEAR(NR), MORE(NRU), EXIT(NRU), FWD(NR),

BACK(NR))

U2.1.1L-C fCLEAROR (procedure)

Cancel changes to Node and Replacement information

U2.1.1L-M MOR EN fl (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form[UPDATE NODE-REPLACEMENT-
USER](NODE#] AND UD# = Form(UPDATE NODE -
REPLACEMENT(sub)I[UD#]

Close UPDATE NODE-REPLACEMENT forms
Activate BY NODE#(U) procedure

U2.1.1L-E XIT(iNRM (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# = Form(UPDATE NODE-REPLACEMEINT
[NODE#] AND UD# - Form[UPDATE NODE-
REPLACEMENT-(sub)][UD#]

Close UPDATE NODE-REPLACEMENT - USER forms
Activate CKT CARD procedure

U2.1.1L-F FWD(NR) (procedure)
Display next NODE-REPL and REPLACEMENT instances for

NODE#

U2.1.1L-B BACKNl±R) (procedure)
Display previous NODE-REPL and REPLACEMENT instances for

NODE#

U2.1.1C CANCEL(NU) (procedure)
Close INPUT NODE# form
Activate CKT CARD(U) procedure

126

U2.2.1 BY UMLU (procedure)
Activate INPUT UD# form
Accept UD# input

On Command Button Push, Activate procedures
(CANCEL(UDU), LOCATE(UU))

U2.2.1C CANCE!,rMM

Close INPUT UD# form
Activate CKT CARD(U) procedure

U2.2.1L LQOCATEUDA
Retrieve REPLACEMENT instances

WHERE UD# = Form[INPUT UD#][UD#]
Check to see if UD# input provided and it exists

if not, display message and Activate BY UDD# procedure
Activate UPDATE UD# - REPLACEMENT form
Display REPLACEMENT instance
Accept changes to Replacement information

On Command Button Push, Activate procedures
(UPDATE UD#, CLEAR(UD), EX[T(UDU), MORE(UD))

U2.2.1L-U UPDATE UD# (procedure)
Activate CHANGE UD# form
Accept UD# input
Check to see if UD# input provided and it does not already

exist, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures
(CANCEL(UD), CHANGE UD#(UD))

U2.2.1L-UC CANCEIAUDL (procedure)
Close CHANGE UD# form

U2.2.1L-JUD CHANGE UD#(UD) (procedure)
Accept NEW UD# input
Validate change (Yes/No)

if NO, Close CHANGE UD# form
Activate UPDATE RELATED UD function
Display UPDATE UD# - REPLACEMENT form where

UD# = NEW UD#

U2.2.1L-C CLEAR(IUU (procedure)
Cancel changes to Replacement information

127

U2.2.1L-E EXI(UgpM (procedure)
Update REPLACEMENT instance where UD# = Form[UPDATE

UD# - REPLACEMENT][UD#]
Close UPDATE UD# - REPLACEMENT form
Activate CKT CARD(U) procedure

U2.2.1L-M MQRE(M (procedure)
Update REPLACEMENT instance where UD# = Form[UPDATE

UD# - REPLACEENMT]UD#]
Close UPDATE UD# - REPLACEMENT form
Activate BY UD#(procedure

U2.B UPDATE U3DLJ' (procedure)
Not Yet Designed

U2.C UPDATE PART INFOfUf (procedure)
Not Yet Designed

u2.0-R R&fBLR (procedure)
Close DB MAINT - USER MENU
Activate USER MENU

U3.0 US-AGE HISTORY MENU (procedure)
Activate USAGE MENU

On Command Button Push, Activate procedures
(ENTER USAGE DATA(U), PERIODIC USAGE REPORT(U), ANNUAL

USAGE REPORT(U), RETURN(HU))

U3.1 ENTER USAGE DATAMUb (procedure)
Not Yet Designed

U3.2 PERIODIC USAGE REPORT(T) (procedure)
Not Yet Designed

U3.3 ANNUAL USAGE REMORT(UM (procedure)
Not Yet Designed

U3.3-R RETURNI M (procedure)
Close USAGE MENU
Activate USER MENU procedure

128

2. Administrator Procedures

AM ADMWIN MENU (procedure)
Activate ADMIN Menu - Display Menu

On Command Button Push, Activate procedures
(PART INFO MENU - ADMIN, USAGE MENU, DB MAINT MENU -

ADMEN, EXIT ADMIN)

AI.0 PART INFO MENU- ADMN: (procedure)
Activate PART INFO - ADMIN Menu - Display Menu

On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU -

ADMIN, RETURN(AR))

A1.1 SUPPLY: (procedure) [SAME AS Ul.1]
Activate BROWSE PART form
Input PART# from list selection

On Command Button Push, Activate subprocedures
(LOCATE(AS), CANCEL(CS))

A1.1L : (procedure) [SAME AS Ul. iL]
Activate PART SUPPLY INFO form

Retrieve PART instance WHERE PART# = Form[BROWSE
PART][PART#]

Display PART instance
On Command Button Push, Activate subprocedures

(RETURN(AS))
A1.1L-R B�(QA S: (procedure)

Close PART SUPPLY INFO form
Activate ADMIN MENU procedure

A1.1C CANCELCS) (procedure)
Close PART SUPPLY INFO form
Activate PART INFO MENU - ADMIN procedure

A1.2 UPDATE SUPPLY INFO: (procedure) [SAME AS UI.2]
Activate UPDATE PART form

Accept PART#
On Command Button Push, Activate subprocedures

(LOCATE(UA), CANCEL(UA))

129

A1.2L WOIZLIU : (procedure)
Check to see if Part# input provided and it exists

if not, display message and Activate UPDATE SUPPLY INFO
procedure

Retrieve PART instance WHERE PART# = Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures
(MORE, RETURN(LA), ISSUE, ORDER, RECEIVE)

A1.2,-M MOjE: (procedure) [SAME AS Ul.2L-M]
Update PART instance WHERE PART# = Form[PART SUPPLY

INFO UPDATE] [PART#]
Close PART SUPPLY INFO UPDATE form
Activate UPDATE SUPPLY INFO subprocedure

A1.2L-R R lEWIfL" (procedure)
Update PART instance WHERE PART# = Form[PART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY INFO UPDATE form
Activate PART INFO MENU - ADMIN procedure

A1.2L-I I (procedure) [SAME AS Ul.2L-I]
Activate ISSUE PARTS form
Set initial number of parts issued to 0
Accept update to number of parts issued
On Command Button Push, Activate subprocedures

(UPDATE(1), CANCEL(I))

A1.2L-IU]P[AT: (procedure) [SAME AS U1.2L-IU]
Subtract number of parts issued from number of parts on hand
Close ISSUE PARTS form
A1.2L-IC • .j[: (procedure) [SAME AS Ul.2L-IC]
Close ISSUE PARTS form

A1.2L-O ORDE (procedure) [SAME AS U1.2L-O]
Activate PARTS ORDERED form
Set initial number of parts ordered to 0
Accept update to number of parts ordered
On Command Button Push, Activate subprocedures

(UPDATE(O), CANCEL(O))

130

A1.2L-OU HPDATE(O: (procedure) [SAME AS U1.2L-
ou]

Add number of parts ordered to number of parts on order
Close PARTS ORDERED form

A1.2L-OC CANCEUO.: (procedure) [SAME AS UI.2L-
OC

Close PARTS ORDERED form

A1.2J-R E R fl (procedure) [SAME AS Ul.2L-R]
Activate PARTS RECEIVED form
Set initial number of parts received to 0
Accept update to number of parts received
On Command Button Push, Activate subprocedures

(UPDATE(R), CANCEL(R))

AI.L-RU UPDAITEiR: (procedure) [SAME AS UI.2L-
RU]

Subtract number of parts received from number of parts on
order

Add number of parts received to number of parts on hand
Close PARTS RECEIVED form

A1.2L-RC CANCELM: (procedure)[SAME AS U1.2L-
RC]

Close PARTS RECEIVED form

AL.2C CANCIMZUU)
Close UPDATE PART form
Activate PART INFO MENU -ADMIN procedure

A1.3 REPORT PARIS IMO MENU- ADMIN: (procedure)
Activate PARTS REPORT MENU - ADMIN form

On Command Button Push, Activate subprocedures
(SYSTEM PARTS LIST, PREVIOUS(RPA), RETURN TO

MAN•URA))

A1.3.1 SYSTEM PARTS LIST (procedure)
Query PART for SYSTEM PARTS:

select Part# WHERE Part# 0 Null
Query PART and REPLACEMENT for UDs FOR SYSTEM PARTS:

select Part#, UD# WHERE Part# = Parts list[Part#]
Display SYSTEM PARTS report from SYSTEM PARTS query

131

Display UDs FOR SYSTEM PARTS subreport from UDs for SYSTEM
PARTS query

WHERE PART# for UDs FOR SYSTEM PARTS subreport - PART#
for SYSTEM PARTS report

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) **

* Note: these are Access procedures, and are not covered firther

AI.3P PREVIOUS(RPA) (procedure)
Close PARTS REPORT MENU - ADMIN form
Activate PART INFO MENU- ADMIN procedure

A1.3R BEE= TO MAIN RRA) (procedure)
Close PARTS REPORT MENU - ADMIN form
Activate ADMIN MENU procedure

Al.ORBfURMARB
Close PART INFO - ADM[N menu
Activate ADMIN MENU procedure

A2.0 DB MAINT MENU - ADMIN (procedure)
Activate DB MAINT - ADMIN Menm - Display Menu

On Command Button Push, Activate procedures
(CKT CARD(A)ý UD(A), PART INFO(A), RETURN(DA))

A2A CKT CARDA (procedure)
Activate SELECT CHANGE Menu - Display Menu

On Command Button Push, Activate procedures
(BY NODE#(A), BY UD#, RETURN)

A2.1.1 BYXffQRMI (procedure)
Activate INPUT NODE# form
Accept Node# input

On Command Button Push, Activate procedures
(CANCEL(NA), LOCATE(NA))

A2.1.1L LOCAXZ W (procedure)

Retrieve NODE, NODE-REPL, and REPLACEMENT instances
WHERE Node# - FomNPUT NODE#][NODE#J]

Check to see ifNode# input provided and it exis
if not, display message and Activate BY NODE# procedure

Activate UPDATE NODE-REPLACEMENT - ADMIN forms

132

Display NODE instance and first NODE-REPL and REPLACEMENT
instance$

Accept changes to Node and placement information
On Command Button Push, Activate procedures

(UPDATE NODE#, CLEAR(NRA), MORE(NRA),
EXlT(NRA), FWD(NRA), BACK(NRA))

A2.1.1L-N UPATE NODE# (procedure)
Activate CHANGE NODE# form
Accept NODE# input
Check to see ifNODE# input provided and it does not already

aest, if not correct display message and Activate
UPDATE NODE# procedure

On Command Button Push, Activate procedures
(CANCEL(Un CHANGE NODE#)

A2.2.1L-NC CANCEIUN (procedure)
Close CHANGE NODE# form

A2.2.1L-ND HANE NODE# (procedure)
Accept NEW NODE# input
Validate change (YeNo)

if NO, Close CHANGE NODE# form
Activate UPDATE RELATED NODE function
Display UPDATE NODE-REPLACEMENT- ADMIN form

where NODE# = NEW NODE#

AZ.1.LC CLEARO2 A) (procedure)
Cancel changes to Node and Replacement information

A2.1IL-M MQIZLNR& (procedure)
Update NODE, NODE-REPL, REPIACEMENT instances where

Node# = Form[UPDATE NODE-REPLACEMENT-
ADMIN][NODE#] AND UD# = Form[UPDATE NODE -

EPLAC~EMENT-ADMIN(sub)][UDfl
Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate BY NODE# (A) procedure

133

A2.1.1L-E ~rr[(Nfl (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# - Form[UPDATE NODE-REPLACEMENT-
ADMIN](NODE#] AND LID# = Form[UPDATE NODE -
REPLACEMENT-ADMIN(sub)](UD#]

Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate CKT CARD(A) procedure

A2.1.iL-F Zpff• (procedure) [SAME AS U2. 1. IL-F]
Display next NODE-REPL and REPLACEMENT instances for

NODE#

U2.1.1L-B B MI (procedure) [SAME AS U2. 1. IL-B]
Display previous NODE-REPL and REPLACEMENT instances for

NODE#

A2.1.IC A (procedure)
Close INPUT NODE# form
Activate CKT CARD(A) procedure

A2.7.1 BY WD A, (procedure)
Activate INPUT UD# form
Acep UD nput

On Command Button Push, Activate procedures
(CANCEL(UDA), LOCATE(UDA))

A22.1C CANC A)
Close INPUT UD# form
Activate CKT CARD(A) procedure

A22.IL LOWII(DA}
Retrieve REPLACEMENT instances

WHERE UD# - ForM[PUT UD#][UD#]
Check to see if UD# input provided and it exists

if not, display mesage and Activate BY UD# procedure
Activate UPDATE UD# - REPLACEMENT form
Display REPLACEMENT instance
Accept changes to Replacement infonnation

On Command Button Push, Activate procedures
(UPDATE UD#, CLEAR(UD), EXIT(UDA),

MORE(UDA))

134

A2.2.1L-U UPDATE •D (procedure)
Activate CHANGE UD# form
Accept UD# inpu
Check to see if UD# input provided and it does not already

exst, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures
(CANCEL(UU), CHANGE UD#)

A2.2.1L-UC QANCEUU (procedure)
Close CHANGE UD# form

A2.2.1L-UD CHANGE UD# (procedure)
Accept NEW UD# input
Validate change (YesNo)

if NO, Close CHANGE UD# form
Activate UPDATE RELATED UD function
Display UPDATE UI# - REPLACEMENT form where
UD# = NEWUD#

A22.1L-C Q EAR(UDI (procedure)
Cancel changes to Repl information

A2.2.1L-E EM[flMrA) (procedure)
Update REPLACEMENT instance where UD# = Form[UPDATE

UN# - REPLACEMEM[NUD#]
Close UPDATE UD# - REPLACEMENT form
Activate CKT CARD(A) procedure

A2.2.1L-M MOQ. UDA) (procedure)
Update REPLACEMENT instance where UN = Form[UPDATE

UN - REPLACEMENT[UD#]
Close UPDATE UDN - REPLACEMENT form
Activate BY UD#(A) procedure

A2.B UjPIDA UDNA) (procedure)
Not Yet Designed

A2.C UPDATE PART INFO(W (procedure)
Not Yet Designed

135

A2.O-R RETURBA) (procedure)
Close DB MAINT - ADMIN MENU
Activate ADMIN MENU

A3.0 USAGE HISTORY MENU(MA) (procedure)
Activate USAGE MENU
Not Yet Designed

136

3. System Functions

Function UPDATE RELATED UD
SELECT all NODE instances
Old UD# = Form(Change UD#][UD#]
SELECT all REPLACEMENT instances WHERE UD# = Old ITD#

store in TEMP entaty
UPDATE all instances in TEMP entity

UD# =New UD#
INSERT into REPLACEMENT all instances in TEMP entity
DELETE all instances in TEMP entity

Loop Until Done
FIND NODE-REPL instances WHERE UD# = Old UD#
UPDATE UD# to New UD#

End
Form[UPDATE UD# - REPLACEMENT][UD#] = New UD#

Function UPDATE RELATED NODE
Old Node# - Form(Change Node#][Node#]
SELECT all NODE instances WHERE Node# = Old Node#

store in TEMP entity
UPDATE all instances in TEMP entity

Node# = New Node #
INSERT into NODE all instances in TEMP entity
DELETE all instances in TEMP entity

Loop Until Done
FIND NODE-REPL instances WHERE Node# = Old Node#
UPDATE Node# to New Node#

End
Form[Update Node-Replacement -Admin][Node#] = New Node#

137

B. SYSTEM FORMS

Browse Part Supply Information

Browse Part Supply Information

Press Cancel W Retrn to Menu

Figure D-1 - Browse Part Supply Information Form

Part Supl Information

Padt 13151940-1

NSN: [......
Pnc,.: $790.00~o
Rkm I

0. Hwad fk
On Ordw (-T

Press Return to Locate Another Part
or to Return to Main Menu

Figure D-2 - Part Supply Information Form

138

19 Part Supply Information Update

Update Supply Status For Parts

Type in Part Number and Press Locate orPress Cancel to Return to Menu

Figure D-3 - Part Supply Information Update Form

Part Supply Information

Part Supply Information-
Update

NSN: I _ ,- -
~ ~~~~~~s B__ 7 _eo ._o]u tteuons Below to I

Update Quantitie V

Parts Issued

On Hand L Pos Ordeed

On Ordec I.............. ý Parts Received

Figure D-4 - Part Supply Information Update Form

139

Parts Issued

Input Quantity of Parts Issued

G.,.•u aa--d Fl

IType in Ouan4y of Part Issued and Press
Update or Press Cancel I

Figure D-5 - Parts Issued Form

Parts Ordered

Input Quantity of Parts Ordered

Quahti Oudlmd

IType inuantityof Part Ordered andI
Press Update or Press Cancel

Figure D-6 - Parts Ordered Form

Parts Issued

Input Quantity of Parts Received

Qum*it ReceivWdF

7 Type in Quan5dy Pot• Receivod and
Press Update or Press Cancel

Figure D-7 - Parts Received Form

140

Input Node&

Input Node# For Update

Nod& a

I Type in Node Number and Press Locate
or Press Cancel to Retum to Menu I

Figure D-8 - Input Node# Form

..... ... Update Node-Replacement

Update Node and Replacement Information

Moibd RePS11 <- Cance

I Uze B~utham to look at
Noo UDis mhisNode Mm UD* Pwviou UD,6 ftA. • c) u o D . .•. R -41 W I

Docmmntalion Retmoce m o3.20

Alerate Location N'ONE -_ _

Figure D-9 - Update Node-Replacement Information

141

*V- - a

Input UDI

Input UD# For Update

UD a ~

IType in Node Number and Press Locate

or Press Cancel to Retum to Menu

Figure D-10 - Input UD# Form

Update UD#

Update UD# or Replacement
Information

- -Cace
-UDStJM

PwhU to UDS

Aftemate Locatan w

ater.-E

Figure D- 11 - Update UD# - Replacement Form

142

Change UDS ?

Input New UD#

Old UD M Now UD I

Type in New UD Number and Change UDD or
Press Cancel to Return to Previous Screen

Figure D-12 - Change UD# Form

143

Updale Node-Replacement

M odu , Rat @11

UeBidlans to look at
MnUD* loths U~Nods Man UD* Pawinvi UD:I U Appkabj UD&t r1441Afi J2

Do nta on Reference ..u.

Part*. |3814061

Note=: ..

Figure D-13 - Update Node-Replacement (Admin) Form

Change Node#?

Input New Node#

Old Nod INOO ' N.w Node 9 [Z Z]

Type in New Node Number and Change Node#
or Press Cancel to Return to Previous Screen

Figure D- 14 - Change Node# Form

144

C.SYSTEM REPORTS

Parts Not On Hand
06-A-far-94

ParW. 3151940-1

UDO: 412/A1A7-K22

UD#: 432/A 1A7-K22

Pardf 5381390-1

UD#* 441/A3F1-A/13

ParW. 5381406-1

UD#- 4.41/A3Fl-A/12

Pu,1i 5399983

UD#: 412/A1A5-A9

UD#: 432/A 1AS-A9

Figure D-1 5 - Parts Not On Hand Report

145

Parts On Order
06-Mar-94

Part#: 12345

UD#: 2559

On Order :

Part#: 5399968-2

UD#: 412/AlAS

UD#: 432/AlAS

On Order. 2

Figure D-16 - Parts On Order Report

146

Parts Under Allowance
06-Mar-94

Par*. 5399968-2

Part ailowamce: 4

O Hand: 2

O Order. 2

Figure D-17 - Parts Under Stock Report

147

Complete Parts Listing for System
OG.Mar.94

Psrt# 12345

VIWe 2559

Par*. 3144961

UN-. 403/PAN D-VI I

MAP- 42:3/PAN D-VI I

Pafli. 31454643.

V~f 403/PAN D-A/02

UD': 423/PAN D-AAI2

Par* ---149":,

U~iP*~ 403/PAN D-S2

MW. 423/PAN D-S-2

Part.h 3151940-1

UMW: 412/A1A7i-K22'

UDN' 432A1MA-7-=2

Part#: 31514151

UJW 403/PAN D-SSO

UDN: 423/PANI D-S30

Partf: 5299725-1

UDe-t 432WAA6-FLI

Figure D- 17 - System Parts List Report

148

APPENDIX K IMPLEMENTATION OF PROCESS LOGIC

A. STANDARD METHODS OF PROCESS LOGIC IMPLEMENTATION

"Accept ... " refers to a form with an unbound text box which will accept user input.

"Accept changes to.." updates the record when changes are made in a bound text box, in

a form. This update is actually automatically performed, unless actions are taken to

prevent it from happening.

The "Activate ... menu" or "Activate... form" is what happens when a command button

is "pushed" and macro opens a form. The "On Push" property is used to invoke a

macro which performs the OpenForm action. The name of the form must be

included in the arguments, and other arguments may also be used. The "Activate

form WHERE [Item] - Form![FormNamej! [Form Item]" is used in "Locate"

actions to locate a particular record of interest, where the form('mput) item is

compared against the items in the table on which the activated form is based.

"Calculate number of...' uses a macro with the RunCode action to perform the required

calculations. The procedure executed by this action first checks to see if the number

entered by the user is a positive number, and if it is not, a message box is displayed

and the user is returned to the entry screen. If the entry is a positive number then

calculations are performed on the values in the appropriate fields.

"Check -. input provided and it exists" process checks to see if input is actually

provided and it exists as data in the field and table specified, and then displays a

message if it doesn. This process uses both a macro and a Access Basic procedure.

The 'Locate" button first performs the OpenForm action, attempting to locate the

149

key value the user has placed into the text box. If no match is found, Access actually

brings up a record with a null value in its key field. The next action in the macro is

RunCode which runs the procedure CheckEmpty...O which compares the value in

the record displayed to see if the key is null, and if it is, a message box is created

with a message and a command button. This command button only allows the

finction to continue to the next statement therein, which is to invoke a macro. This

macro then performs an OpenForm action on the original input screen so the user

may try another input value if an error was made or cancel the action.

"Cloe..form" uses the Close action in a macro with the argument being the name of the

form which will be closed.

"Display ... instance" is actually part of the same implementation process as "Retrieve" or

"Activate WHERE," since when Access retrieves a record using the OpenForm

command with the WHERE CONDITION, it displays that instance in the form

which has been opened.

"Display ... report from ... query" uses the macro action OpenReport with the

arguments of the Report Name the "Print Preview" view. The report's source is the

specified query. "Display ... subreport.." uses similar actions, however this report

is displayed within another report and is invoked by the property of the subreport

control on the main report. In addition, the statement "(Field) for .. report"

designates the field to be used for the Link Master /Link Child Fields properties.

"Display next... instances for ..." uses the macro action ScrollDown to move to the next

record in a group of records.

"Display previous .. instances for .. " uses the macro action Scrol[Up to move to the

previous record in a group of records.

150

"lUputt generally refers to the selection of an item from a list or direct user input into the

Tet Box of an unbound form.

"Query... for (Query Name), select... WHERE ..." uses a query designed in the QBE

environment to implement a query which looks at specified tables to produce a query

of name Query Name. Specified fields are displayed and WHERE designates the

criteria used for the selection of records.

"Retrieve... instance WHERE..." is implemented in the same manner as "Activate... form

WHERE ... " process covered above.

"Retrieve...(related tables) instances WHERE..." is implemented using a subform/form

combination which retrieves records related to the main record through the Link

Fields in subform control. If

"Set initial value to.." uses the SetValue action in a macro, with the arguments of the

field, and the specific value of this field to which it will be set..

151

B. APPLICATION OBnCTS

1. APPLICATION TABLES AND FIELDS

PRIMARY TABLES W/ FIELDS (THOSE IMPLEMENTED)
NODE - used to store Node# and a drawing reference

FIELDS: Q MODULE REF
NODE-REPL - used as intersection between NODE and REPLACEMENT

also contains a documentation reference figure for that
combination of Node# and UD#

FIELDS: NQDE#, UD. CKT REF

REPLACEMENT - used to store UD# related info such as Part# and an
Alternate Location for that same part

FIELDS: IM#. PART#, ALT LOC, NOTES

PART - stores supply information about a part
FIELDS: P NSN, PRICE, ALLOWANCE, PARTS ON HAND

PARTS ON ORDER

TEMPORARY TABLES
1NX - Used for DDE Query - stores Node number

FIELDS: NODE#

NEWTX - Used for DDE Query - stores results of Make Table query
FIELDS: UD#, PART#, ALT LOC, CKT REF, NOTES

TempNode (same structure as NODE, empty, used by SQL Update)

TempNode-Repl (same structure as NODE-REPL)

TempReplacement (same structure as REPLACEMENT)

PartsList - used for System Parts Report
FIELDS: PART#

2. APPLICATION QUERIES

QUERIES

Get Supply Info - Gets information for Browse Parts Supply Information process
TABLES: PART

152

Parts Not On Hand - Finds parts for which Parts On Hand =0 for Parts Not On
Hand Report

TABLES: REPLACEMENT - PART

Parts Not On Hand2 - Used for subreport of Parts Not On Hand Report,
lists UD#s

TABLES: REPLACEMENT - PART

Parts On Order - Finds parts for which Parts On Order > 0 for Parts On Order
Report

TABLES: REPLACEMENT <- PART

Parts On Order2 - Used for subreport of Parts On Order Report, lists UD#s
TABLES: REPLACEMENT <- PART

Parts Under Stock - Finds parts for which On Hand amountt is less than
allowance for Parts Under Stock Report

TABLES: PART

System Parts - Gets list of parts for System Parts List report
TABLES: PartsList

System Parts List - ACTION QUERY - Makes table of Part#s
TABLES: REPLACEMENT

System Parts - Gets list of UD#s for Parts for System Parts List subreport
TABLES: PartsList->REPLACEMENT

IXQ - ACTION QUERY - Makes table of Parts Info for expert system request
TABLES: 1NX -NODE-REPL - REPLACEMENT

3. APPLICATION REPORTS

R- Parts Not On Hand - Reports Parts which are not on hand and may require ordering

with their respective UD#s

SOURCE: Parts Not On Hand (query)

Parts Not On Hand2 - subreport for Parts Not On Hand report

SOURCE: Parts Not On Hand2 (query)

153

R-Parts on Order - Reports Parts which are on order with their respective UD#s

SOURCE: : Parts On Order (query)

R-Parts On Order2 - subreport for Parts On Order report

SOURCE: Parts On Order2 (query)

R-Parts Under Stock - Reports Parts which are under allowance level

SOURCE: Parts Under Stock (query)

R-System Parts - Reports all Part#s in System, and their respective UD#s

SOURCE: System Parts (query)

R-System Parts2 - subreport for System Parts report

SOURCE: System Parts2 (query)

4. APPLICATION FORMS: CONTROLS, PROCESSES, AND

PROPERTIES

lUpdate Node-Repl - Update Node-Repl Form from NODE - No Node# Update
RECORD SOURCE: NODE
BUTTONS: On Push

[Clear] 1dmk amm. Clear - Cancel Changes
[Exit] Exit2 - Exit Form and Save
[More] More - Save and request anodtr Node-Repl

SPECIAL CHARACTERISTICS:
SUBFORM - Source: lUpdate Node-Repl(sub)

Link Master/Child Field = Node#

lUpdate Node-Rep] M - Update Node-Repl Form from NODE ind. Update Node button
RECORD SOURCE: NODE
BUTTONS: On Push

[Clear] Vf Macros. Clear - Cancel changes
[Exit] Exit2 - Exit Form and Save
[More] More - Save and request another Node-Repl
[*] Change Node -Opens form to input new Node#

SPECIAL CHARACTERISTICS:
SUBFORM - Source: lUpdate Node-Repl(sub)

Link Master/Child Field = Node#

154

lUpdate Node-Reop (sub) - View UD#s related to node, update Doc Ref info
RECORD SOURCE: NODE-REPL
BUTTONS: On Push

[Fwd] MW= Macros. Scroll Down - Move to Next UD#
[Back] Scroll Up - Move to Previous UD#

SPECIAL CHARACTERISTICS:
UD# - LaokW to prevent iadvertent change must use Change UD#
Node# not on form (on master form)
SUBFORM - Source: lUpdate Repl (Sub Sub)

Link Master/Child Field = UD#

1Update NR-UD - Used to update UD#, Replacement info
RECORD SOURCE: REPLACEMENT
BUTrONS: On Push

[Clear] Ufat Macros. Clear - Cancel Changes
[Exit] Exit UD - Save and Exit Form
[More] More UD - Save and request another UD#
[] Change UD - Use to change UD to maintain

referential intgrity across related tables

lUpdate Rept (Sub Sub) - Subform - REPLACEMENT info
RECORD SOURCE: REPLACEMENT
BUTTONS: On Push

None

DB Maint SWBD M - Admin DB Maintenance Menu Form
RECORD SOURCE: None
BUTMONS: On Push

[Ckt Card] DB-Maint SWBD - M.Ckt Card - Opens Select Change Menu
[Update UDs] Update UDs - Not implemented
[Part Info] Part Info - Not implamnted
[Return] Reurn to Main - Return to Main Menu

DB Maint SWBD U - User DB Maintenance Menu Form
RECORD SOURCE: None
BUTTONS: On Push

[Ckt Card] PB-Maint SWBD - U. Ckt Card - Opens Select Change Menu
[Update UDs] Update UDs - Not implemented
[Part Info] Part Info -Not implemented
[Return] Return to Main - Return to Main Menu

155

MNW2 Main Switchboard - Maint - Admin Main Menu
RECORD SOURCE: None
BUTTONS: On Push

[Part Infol MK92 Mam - M. Open Parts M - Opens Part n& Menu
lusp] Open Usa M - Opens Usage Menu
fDB] Open DB Maint-M - Opens DB Maimt Menu
[Exit] Exit - Exits to Access/Opning

MK92 Main Switchboard - User - User Main Menu
RECORD SOURCE: None
BUTTONS: On Push

[Part Info] W(92 Ma -JU. Open Parts - Opens Part Info Menu
[Usage] Open Usage - Opens Usage Menu
fDB] Open DB-Maint U - Opens DB Maint Menu
[Exit] Exit - Exits to Access/Opening or Quits in Runt••e

Node Change - used in Node-Repi update
RECORD SOURCE: NODE
BUTTONS: On Push

[Cancel] UMM Marms. Cancel Node Change - Cancels Change
[Change Node#] Change Nod3 - Changes Node# in NODE and

NODE-REPL records

Node# Input2 - used in Node-Repi update
RECORD SOURCE: Now
BUTTONS: On Push

[CancelJ IbdoMc .Exit - Cance and reun to prmous sew
[Loca i Find Node2 - Used to Loate correct Node, Node-

Repi, and Replacemient records

Node# Input2 M - used in Node-Repl update Admin
RECORD SOURCE: None
BUYIrONS: On r,'sh

[Cancel] IhAIS Nh~o. Exit M - Cancels and returs to prv screen
[Lcate] Find Node2 M - Used to Loate correct Node, Node-

Repi, and Replace•ent records

Not Implemented - used by SWBD / buttons not implemented
RECORD SOURCE: None
BUITON: On Push

[Return] Close NI - Closes this form and returns to previous form

156

Oeig SWBD - Opening Administrator Menu
RECORD SOURCE: None
BUTTONS: On Push

[User] Qpi WD. Open User - Opens Main User Menu
[Adminj Open Maint - Opens Mfain Admin Menu
[Exit] Close - Exits to Access Database

Paft Ifo SWBD - for user to ge Part Info scresps
RECORD SOURCE: None
BUTTONS: On Push

[Supply] PartInfo SWB. Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
[Rex)rt] Report - Part Supply Info Reports
[Returan] Return to Main - Returns to Main Menu

Part Info SWBD M- to gct Pat Info scr /reports for Administrator
RECORD SOURCE: None
BUTTONS: On Push

[Supply] Pa..I.SW Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
Report] Report M - Part Supply Info Reports Admin
[Return] Return to Main M - Returns to Main Admin Meu

Par Report SWBD - Submeau for Part Info Menu
RECORD SOURCE: None
BUTTONS: On Push

[Not on Hand] B" SWBD. Not On Hand -Lists Parts Not in Stock
[On Order] On Order - Lists Parts/U om order
[Under Stock] Under Stock - Lists Parts/UDs under allowance
[Pmrvious] Return to Prev - Returns to Part Inf Menu
(Return] Return to Main - Returns to Main Menu

Part Report SWBD M - Submenu for Part Info Menu Admin
RECORD SOURCE: None
BUTrONS: On Push

[System] Part R" SWBD. System M - Lists PaM/UDs in system
[Previous] Return to Prey - Returns to Admin Put Inf Menu
[Reum] Return to Main - Returns to Main Admin Menu

157

Part Supply Info - Allows update to Part Supply ino except Part#
RECORD SOURCE: PART
BUTfTONS: On Push

[Mom] Pa Macros. More Parts - Brings up anodter Part record
[Cancdl] Cancel2 - Cancels and exits

msel] Open Issue - Opens th Parts Issued form
[Order] Open Order - Opens the Parts Ordered form
[Receive] Open Receive - Opens the Parts Received form

Part Supply Info Browse - Allows browse of part supply info for a part# from list
RECORD SOURCE: Get Supply Info (query)
BITTONS: On Push

[Return] Part Mum. More Parts Test - returns to previous screen

Part Supply Info Test - Allows browse of part supply ifo for a part# from list
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push

[Return] Part Macros. More Parts Test - returns to prvimm screen

Parts Issued
RECORD SOURCE: None
BIUfTONS: On Push

[Update] Parn Mma. Issue Update - Updates the mnber of parts on hand
[Cancel] Issue Cancel - Cancel and return to previou form

Parts Ordered
RECORD SOURCE: None
BUTI'ONS: On Push

[Update] Part Macros. Order Update - Updates mumber parts m order
[Cancel] Order Cancel - Cancel and return to previous fom

Parts Received
RECORD SOURCE: None
BUITTONS: On Push

[Update] Parn Macro. Receive Update - Updates number parts on order
and parts an hand

[Cancel] Receive Cancel

Part Supply Info Test
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push

[Reum] Part Macros. More Parts Test - Returns to prv scree
SPECIAL CHARACTERISTICS:

Before Update: Clear Record
On Update: Clear Record
On Close: Clear Record

158

Part# Input
RECORD SOURCE: Noce
BUTrTONS: On Push

[Cancel] Part Macros. Cancel - cancel and return to prvwus screen
[Locat] Locate Parts - Gets amother Part#N

PartO Input Browse
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push

[Cancel] b&Macro. Cancel Test - Cancel and returns to prey screen
[Locatel] Locate Parts Test - Gets another Part#

SPECIAL CHARACTERISTICS:

COMBO BOX:
Catrol Source: Part#
Row Source Type: Table/Query
Row Source: Get Supply Info (query)

Par# Input Test
RECORD SOURCE: Get Supply Info (query)
BUTTONS: On Push

[Cancel] Part Macros. Cancel Test - Cancel and return to prey scree
[Locate] Locate Parts Test - Locates another Part#

SPECIAL CHARACTERISTICS:
On Close: Clear Record

Select Chuumg2 - Select Chop Type Menu
RECORD SOURCE: Now
BUTTONS: On Push

[By NodeqJ], bm Select Node U - Allow dcang by Node#
[By UDJ Slc UD - alows ap by UDN
[Return] Select Cancl2 - Cancel and return to prv mumm

Select Ca gel M - Select Change Type Meu Admin
RECORD SOURCE: Nowe
BUTTONS: On Push

[By Node#] _Udt M . Select Node M - Allow changes by Node#
[By UD#1 Select UD - allows chang by UD#
[Return] Select Cancd2 - Cancel and return to prev menu

UD Cmnge
RECORD SOURCE: REPLACEMENT
BUrrTONS: On Push

[Cancel] bd lco aclUDCag acbca
[ChanCa Ua D3 -Process for Changing UI#

159

UDI Input - Allows UD# fir update of Replacement ifo by UD#
RECORD SOURCE: None
BUTTONS: On Push

[Cancel] Et acro. Fxit UD - Cancel change return to prey screen
[Locae] Find UD2 - Locate Replacement record for a UD#

Usage SWBD - Allows use to record and report on usap hiory (ficons impmt)
RECORD SOURCE: None
BUTTONS: On Push

[EINteV= I SatWB. Enter - Enter usg info
[Rltrie"e Retrieve - retrieve us inf ad hoc
[Annual] Annual Report - Produce fimattd report
[Return] Return to Main - Returns to Main User Menu

S. MACROS AND ARGUMENTS

AutoExec OpenForm: MK92 Main Switchboard - User

MK main - U. ARGUMENTS
Open Parts OpenForm: Form: Part Info SWBD
Open Usage OpenForm: Form: Usage SWBD
Open DB Maint - U OpenForm: Form: DB Maint SWBD - U
Exit Close: Form: MK92 Main Switchboard - User

Part Info SWBD.
Supply OpenForm: Form:
Update OpenForm: Fornt
Report OpmForm Form:
Return to Main Close: Part Info SWBD

Close: DB Maint SWBD - U
OpenForm: MK92 Main - U

Part Report SWBD.
Not on Hand OpenReport: Report: R-Parts Not On Hand
On Order OpenForm: Not Implemented
Under Stock OpenForm: Not Implemented
Return to Prev Close: Part Report SWBD

OpenForm. Part Info SWBD
Return to Main Close: Part Report SWBD

Close: Part Info SWBD

160

sage SWBD
Enter OpenForm: Form: Not Implemented
Retrieve OpenForm: Form: Not Implemened
Annual Report OpenForm: Form: Not Implemnted
Return to Main Close: Form: Usage SWBD

DB Maint SWBD- U
Ckt Card OpenForm: Form: Select Change (False)

OpenForm: Form: Select Change2
Help Info OpenForm: Form: Not Implemented
Part Info OpenForm: Form: Not Implemented
Return to Main Close: Form: DB Maint SWBD - U
Close NI Close: Form: Not Implemented

Warning Off SetWarning off

Warning On SetWarning on

Part Macr•
Find Parts OpenForm: Form: Part Supply Info Test

SetValue: V'sble: No
Locate Parts OpenForm: Form: Part Supply Info

Where Condition: Part# = Forms!
[Part# Input]![Part#]

More Parts Close: Form: Part Supply Info
SetValue: Forms! [Part# Input] ![Part#] / Null
Close: Form: Part# Input
OpenForm: Form: Part# Input

Cancel SetValue: Forms![Part# Input] ![Part#] / Null
Close: Form: Part# Input

Cancel2 SetValue: Forms:[Par# Lput]:[Part#] / Null
Close: Form: Part Supply Info
Close: Form: Part# Input

More Parts Test Close: Form: Part Supply Info Test
OpenForm: Form: Part# Input Test (Read Only)

Locate Parts Test SetValue: Visible/No
OpenForm: Form: Part Supply Info Test

Where Condition: Part# = Forms!
[Part Input Test]![Part#]

Cancel Test Close: Form: Part# Input Test
Cance12 Test Close: Form: Part Supply Info Test

Close: Form: Part# Input Test

161

Finish Close: Form: Part Supply Info Test
OpenForm: Form: Part# Input Test (Read Only)
Close: Form: Part# Input Test

Open Order OpenForm: Form: Pans Ordered
SetValue: Formsi[Parts Ordered]! [OrderAmt] / 0

Open Issue OpenForm: Form: Parts Issued
SetValue: Forms:[Parts Issued]I[IssueAmt] / 0

Open Receive OpenForm: Form: Parts Received
SetValue: Forms![Parts Received]! [ReceiveAmt/ 0

Issue Update RunCode: IssuePartsO
Issue Cancel Close: Form: Parts Issued
Order Update RunCode: OrderPartsO
Order Cancel Close: Form: Parts Ordered
Receive Update RunCode: ReceivePartsO
Receive Cancel Close: Form: Parts Received

Update Macro
Find Node SetValue: Visible/NO
(uses Query) OpenForm: Form: lUpdate Node-Repl (Test)

Where Condition: Node#Forms!
[Node# Input]![Node#]

Find Node2 SetValue: Visible/NO
OpenForm: Form: lUpdate Node-Pepl

Where Condition: Node#=Forms!
[Node# Input2]!(Node#l

RunCode: CheckEmptyNode0
More Close: Form: lUpdate Node-Repl

SetValue: Forms:[Node# Input2]J(Node#] / Null
Close: Form: Node# Input2
OpenForm: Form: Node# Input2

Exit SetValue: Forms!(Node# Input2]![Node#] /Null
Close: Form: Node# Input2
OpenForm: Form: Select Change (False)
OpenForm: Form: Select Change2

Save SetValue: Forms(!Node# Input2]![Node#]j/ Null
Close: Form: lUpdate Node-Repl
Close: Form: Node# Input2

Exit2 SetValue: Forms! [Node# Input2]! [Node#] / Null
Close: Form: lUpdate Node-Repi
Close: Form: Node# Input2
Close: Form: Node# Input Test
Close: Form: Select Change (False)
Close: Form: Select Change2

162

Clear SendKeys: (Esc} / Yes
Change Node OpenForm: Form: Node Change

Where Condition: [Node#]=Forms!
[lUpdate Node-Repl] ! [Node#]

Change Node2 Echo - Off
"Getting Node Informatiom"

RunCode: AskUpdateNode 0
RunCode: UpdateRelatedFields 0
Close: Form: Node Change

Change Node3 Echo - Off
"Gettn Circuit Card Information"

RunCode: AskUpdateNode 0 (False)
RunCode: UpdateRelatedNode 0
Close: Form: lUpdate Node-Repl
OpenForm: Form: lUpdate Node-Repl

Where Condition: [Node#] = Forms!
[Node Change]! [NewNode]

Close: Form: Node Change
Reset Node# SetValue: (doesn't work)
Not Implemented OpenForm: Form: Not Implemented
Change UD Close: Form: lUpdate Node-Repl (False)

OpenForm: Form: LTD Change
Where Condition: UD#]=Forms!

[lUpdate NR-UD]![UD#]
Change UD3 Echo I Off

"Getting Replacement Information..."
RunCode: AskUpdateUD 0 (False)
RunCode: UpdateRelatedUD 0
Close: Form: lUpdate UD-NR
OpenForm: Form: lUpdate Node-Repl!

Where Condition: [Node#]=Forms!
[UtD Change]![NewUD]

Close: Form: UD Change
Find UD2 SetValue: Visible I NO (False)

OpenForm: Form: lUpdate NR-UD
Where Condition: [UD#]=Forms!

[UD# Input] I[UD#]
RunCode: CheckEmptyUD 0

Exit UtD Set Value: Forms![UD# Input]![UD#] / Null
Close: Form: lUpdate NR-UD
Close: Form: UD# Input
OpenForm: Form: Select Change (False)
OpenForm: Form: Select Change2

163

Select Node Close: Form: Select Change (False)
SetValue: Visible / No
OpenForm: Form: Node# Input2

Select UD Close: Form: Select Change (False)
SetValue: V'i'ble / No
OpenForm: Form: UD# Input

Select Std Close: Form: Select Change (False)
SetValue: Visible / No
OpenForm: Form: Node# Input2

Select Cancel Close: Form: Select Change
Cancel Node Change Close: Form: Node Change

SendKeys: {Esc) / Yes
Cancel UD Change Close: Form: LID Change

SendKeys: (Esc) / Yes
Select Cance12 Close: Form: Select Change2
More LID Close: Form: lUpdate NR-UD

SetValue: Forms![UD# Input]![UD#] /Null
Close: Form: UD# Input
OpenForm: Form: UD# Input

6. APPLICATION ACCESS BASIC MODULES

UPDATES
(De kmtrons)
Option Compare Database 'Use database order for string comparison

Dim UpdateUD, UpdateNode
Dim OldUD, OldNode, NewUD, NewNode, NodeX
Dim MK92 As Database
Dim wID%

Function AskUndateNode A

OldNode = Forms![Node Change]![Node#]
NewNode = Forms! [Node Change]! [NewNode]
UpdateNode = False

IfMsgBox("Are you sure you want to change" & OldNode &" to" & NewNode &
"?", 292) = 6 Then

UpdateNode f True
Endlf
IfUpdateNode = False Then

164

NewNode = Null
Endlf

End Function

Function AskgndateUD (

OIdUD = Forms![UD Change]! [UD#]
NewUD - Forns![UD Change]![NewUD]
UpdateUD = False

IfMsgBox("Are you sure you want to change" & OIdUD & "to "& NewUD & "9",

292) = 6 Then
UpdateUD = True

EndIf

End Function

Function UldateRelatedNode A
'Changes UD# in related records in all tables
Changes NODE# in related records in all tables
Written S.Talley 1/10/93

OldNode = Forms! [Node Change]![Node#]
NewNode = Forms![Node Change]![NewNode]
NodeX = NewNode

Set MK92 = CurrentDBO
Dim Node As Dynaset, NodeRepl As Dynaset, Replacement As Dynaset
Set Node = MK92.CreateDynaset("NODE")
Set NodeRepl = MK92.CreateDynaset("NODE-REPL")
Set Replacement = MK92.CreateDynaset("REPLACEMENT")

IfMsgBox("Are you sure you want to change " & OldNode & "to " & NewNode & "?",
292) = 6 Then

Criteria - "[Node#] = '" & NewNode & off
Node.Finfirst Criteria
If Not Node.Nomatch Then

MsgBox (NewNode & " is already in use as an Node#. Please enter another Node#")
Exit Function

End If

DoCmd RunMacro "Warning Offr

165

DoCmd RunSQL *SELECT * INTO TempNode FROM NODE WHERE [Node#]
-Forms![Node Change]! [Node#];"

DoCmd RunSQL "UPDATE TempNode SET [Node#] = Forms! [Node
Change]' [NewNode];"

DoCmd RunSQL "INSERT Into Node SELECT * FROM TempNode;"
DoCmd RunSQL "DELETE * FROM TempNode WHERE [Node#] Forms![Node

Change! [Node#II;"

Criteria = "(Node#] ='" & OldNode &me

NodeRept~ind~irst Criteria
IfNot NodeRepl.Nomatch Then

Do While NodeRepi. [Node#] = OldNode
NodeRepl.Edit
NodeRepi. [Node#] = NewNode
NodeRepl.Update
NodeRepl.FindNext Criteria

LOOP
End If

Node.FindFirst Criteria
NodeDelete
Criteria = "[Node#] ="& NewNode & wl
Nodemfinfirst Criteria

Else
Fonns![Node Change]![NewNode] = Forms![Node Change] I[Node#]

End If

DoCmd RuznMacro 'Warning On"

End Function

Function CbeckEmvtvNode-A

NodeX = Forms![lUpdate Node-Repl]! [Node#]
If IsNuUl(NodeX) Then

MsgBox ("No matching node found (or No Node# entered)")
DoCmd RunMacro, "Update Macros.More"

End If

End Function

Function CbeckEmntvUD 0

166

UDX = Forms![lUpdate NR-UD]![UD#]
If IsNui(UDX) Then

MsgBox ("No matching UD# found (or No UD# entered)")
DoCmd RunMacro "Update Macros.More UD"

End If

End Function

Function UpdateRelatedUD A
'Changes UD# in related records in all tables
'Written S.Talley 1/10/93

OIdUD = Forms![UD Change]![UD#]
NewUD = Forms![UJ) Change]![NewUD]

Set MK92 = CurrentDBQ
Dim Node As Dynaset, NodeRepi As Dynaset, Replacement As Dynaset
Set Node = MK92.CreateDynaset("NODE")
Set NodeRepl = MK92.CreateDynaset("NODE-REPL")
Set Replacement = MK92.CreateDynaset("REPLACEMENT")

If UpdateNode = True Then
IfNMsgBox(*Are you sure you want to change " & OldUD & "to " & NewUD & "?",292)
-6 Then

Criteria = "[UD#] = '" & NewUD &
Replacement.FindFirst Criteria
IfNot Replacement.Nomatch Then

MsgBox (NewUD & "is already in use as an UD#. Please enter another UD#")
Exit Function

End If

DoCmd RunMacro "Warning Off"
DoCmd RUnSQL "SELECT * INTO TempReplacement FROM REPLACEMENT

WHERE [UD#] = Forms![UD Change]![UD#];"
DoCmd RunSQL "UPDATE TempReplacer it SET [UD#] = Forms! [UD

Change]! [NewUD];"
DoCmd RunSQL "INSERT Into Replacement SELECT * FROM

TempReplacement;"
DoCmd RunSQL "DELETE * FROM TempReplacement WHERE [UD#] =

Forms![UD Change]![UD#];"

Criteria = "[UD#] =` & OldUD &

167

NodeRepl.FindFirst Criteria
If Not NodeRepl.Nomatch Then

Do While NodeRepl.[UD#] = OldUD
NodeReplYEdt
NodeRepl(UD#] = NeWUD
Nodekepl.Update
NodeftepI.FindNext Criteria

Loop
End If
ReplacemnentfindFirst Criteria
Replacement.Delete
Criteria = "[UD#] ="' & NewU1D &
Replacement.FindFirst Criteria

Else
Forms![UD Change]! [NewUTD] = Forms! [UD Change]![UD#]

End If

DoCmnd Rtunlacro "War-ning On"

End Function

SUPPLY
tDecarations)

Option Compare Database 'Use database order for string comparisons

Dim NewOrder, OldOrder As Integer
Dim OrderAmt
Dim NMK9 As Database
Dim NewIssue, OnHand, Oldlssue, NewOn~land As Integer
Dim IssueAmt
Dim NewReceive, OldReceive As Integer
Dim ReceiveAmt

Function IssueParts A

OnHand = Forms! [Part Supply Info]! [Parts on Hand]
IssueArnt =Forms! [Part Issued)! [ssueAmt]
CheckNumber = True
CheckPositive = True

'Check to see if IssueAmt is an integer
If (Not Isurneric(IssueAmat)) Then

168

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False
DoCmd GoToControl "IssueAmt"

End f

I¶fIssueAmt is a number, then check to see if it's positive
If CheckNumber = True Then

If IssueAmt < 0 Then
MsgBox ("Amount entered must be a positive number. Delete entry and try again or

cancel. (2)")
CheckPositive = False
DoCmd GoToControl "IssueAmt"

End If
EndIf
If (CheckPositive = True) And (CheckNumber = True) Then

NewOnHand = OnHand - ReceiveAmt
Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update
IfNewOnHand < 0 Then

MsgBox ("Amount issued is more than that on hand. Check part supplies and
correct entry.")

Else
Forms![Part Supply Info]I[Parts on Hand] = NewOnHand

End If
DoCmd Close

Else
Forms![Parts Issued]!IssueAmt = 0

Endif

End Function

Function OrderParts 0

OldOrder = Forms! [Part Supply Info]![Parts on Order]
OrderAmt = Forms![Parts Ordered]!'[OrderAmt]
CheckNumber = True
CheckPositive = True

'Check to see if OrderAmt is an integer
If (Not IsNumeric(OrderAmt)) Then

169

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False
DoCmd GoToControl "OrderAmt"

End If

'If OrderAmt is a number, then check to see if it's positive
If CheckNumber = True Then

If OrderAmt < 0 Then
MsgBox (*Amount entered must be a positive number. Delete entry and try again or

cancel. (2)")
CheckPositive = False
DoCmd GoToControl "OrderAmt"

EndIf
End if
If (CheckPositive = True) And (CheckNumber = True) Then

NewOrder = OldOrder + OrderAmt
Forms![Part Supply Info]!'(Parts on Order] = NewOrder
DoCmd Close

Else
Forms![Parts Ordered]VOrderAmt = 0

End If
End Function

Function ReceiveParts A

OnHand = FormsI[Part Supply Info]![Parts on Hand]
OldOrder = Forms![Part Supply Info]![Parts on Order]
ReceiveAmt = Forms! [Parts Received]![ReceiveAmt]
CheckNumber = True
CheckPositive = True
'Check to see ifReceiveAmt is an integer
If (Not IsNumeric(ReceiveAmt)) Then

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False
DoCmd GoToControl "ReceiveAmt"

End If

'If ReceiveAmt is a number, then check to see if it's positive
If CheckNumber = True Then

170

IfReceiveAmt < 0 Then
MsgBox ("Amount entered must be a positive number. Delete entry and try again or

cancel (2)")
CheckPositive = False
DoCmd GoToControl "ReceiveAmt"

EndIf
EndIf
If (CheckPositive = True) And (CheckNumber = True) Then

Update Amt on Hand (Add Recived to On Hand)
NewOnHand = OnHand + ReceiveAmt
Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update
IfNewOnHand < 0 Then

MsgBox ("Amount on hand is less than zero. Check part supplies and correct
entry.")

* Update Amt on Order (Subtract Received to On Hand)
NewOrder = OldOrder - ReceiveAmt
' Check to see if this is < 0, send message if true
IfNewOrder < 0 Then

MsgBox ("Amount on order has been calculated as less than zero. Check
outstanding orders and correct entry. (Value has been reset to 0).")

NewOrder = 0
Endif
Forms! [Part Supply Info]![Parts on Hand] = NewOnHand
Forms![Part Supply Info]![Parts on Order] = NewOrder

EndIf
DoCmd Close

Else
Forms! [Parts Received]! ReceiveAmt = 0

EndIf
End Function

Function CheckEmntvPart A

PartX = Forms! [Part Supply Info]![Part#]
IffIsNuUartX) Then

wId = MsgBox("No matching Part # found (or No Part # entered)", 64, -No Match
Found")

DoCmd RunMacro "Part Macros.More Parts"
Endif

End Function

171

APPENDIX F. DDE INTERFACE DOCUMENTATION

A. ACCESS BASIC LANGUAGE ELEMENTS FOR DDE

Access Basic Element Purpose Available From
Language Element Type

DDEO Function Initia a DDE process with another
application and returns the requested
information

DDEhlnito Function Initiates a DDE and conversation with Access Basic fom
anotherapplication controls

DDERequest(Function Requests an item from a DDE sevm Access Basic form
application controls

DDESendo Function Inimas a DDE process with another Record Soure
aication and sends data to the property of certain

Sitem in that application controls only

DDEE Statement Sends a command to another Access Basic and
application over an established DDE form conUols
channel

DDEPokeO Statement Sends data to another application over Access Basic and
an established channel form controls

DDETeminateO Statement Closes a specified DDE conversation Access Basic and
channel form controls

DDETerminateAllO Statement Closes all open DDE conversation Accss Basic and
channels form Controls

(Peracbke, 1992, p. 244)

172

B. ADEPT FUNCTIONS FOR DDE

Function Description

Advise Asks a server program to send a data item to

Adept each time it cnes

CloseAlIChannels Closes all open channels

CloseChannels Closes an open channel

Execute Sends an executable command to a server
program

Notify Asks a server program to notify Adept each
time a data item changes

OpenChannd Opens a channel to a server program

Poka Sends a data item to a server program

Request Asks a server program to send a data item to
Adept

Unadvise Asks a server program to stop sending a data
item to Adept each time i changes

(Symbologic Corporation, 1991,

173

C. ADEPT AND ACCESS APPUCATION INTERFACE PROCESSES

1. Adept Expert System Interface Node And Scripts

a. Interface Node

Test Mk92 Start

custoB "NO0". nodenum
cUSomU
displayC

Custom Intefce Node

Figure F-1

174

b. Interface Node Scripts

Part 1:
/2 = %1;

Node-'%2;

fl This opens a channel to Access and runs a Macro - current one is called "I TableOnly",
II which takes the node number (already stored for testing) and runs a "make table
f/ quezyn, which gets the correct data for that node from the database - variable Node
fl is not used for anything at this time

AccCall = OpenChanel("MK92T2","D:\mk92db2\MK92T2.MDB");
Execute (AccCal, "[1TableOnly]');
CloseChannel(AccCall)

Part IL
fl Once the table is created, this code opens a channel and pulls it from Access
fl The Open Channel statement is dependent on the path and must be correct for
#I the database being used

AccTalk2=OpenChannel("MK92T2","d:\Mk92db2\mk92t2.mdb;TABLE NEWTX");
These variables are used to determine how many rows (records) exist
Rows-l;
Row2='999";
Row3"999";
Row4=0999";
row=0;

/ These statements get the value of the records and check to see how many
// records exist
Request(AccTalk2,"FirstRow",Rowl);
Request(AccTalk2, "NextRow-"Row2);
Request(AccTalk2, "NexfRow",Row3);
Request(AccTalk2, "NextRow",Row4);
If Row4 - "999" then Rows=3 else Rows--4;
If Row3 - "999" then Rows-2;
If Row2 = *999" then Rowsrl;

#I These statements asign values of Records to variables to break into fields
// For empty records this program substitutes the following statement
II RowX"-<CTRL><TAB> <CTRL><TAB> <CTRL><TAB> <CTRL><TAB>
HI <CTRL><TAB>*" - this eiminates, the <NO VALUE> in the display, which

175

// otherwise occurs if a RowX (or any other row) does not really exist (5 combinations
// of <CTRL><TAB> and space fill the empty fields correcly with blank fields

if (ows4) then
(

RowA=Rowl;
RowB=Row2;
RowC-Row3;
RowD=Row4;

I
else
if (Rows==3) then
(

RowA=Rowl;
RowB=Row2;
RowC-Row3;
RowD=,

}
else
if (Rows-2) then
(

RowA=Rowl;
RowB=Row2;
R~owC'"*"
RowD=:".I

else
if(Rows;=l) then
(

RowA=Rowl;
RowB= *,..
RowC-" *1"
Ra~wD-W *w"

I;
II these statements take the value of each field and assign to variables for 4 rows
until (row - 4) do
{

row'row+ 1;

LX=01
If(row- 1) then

176

LccSh-FindTve RowA, U);

Rowlbnf-GetSubText(RowA,1,Length);
RO=GctSubText(RowA, l,Length);

Nf (row - 2) then

Laigth=-FindText(RowB,")
Row llnfo-GetSubText(RowB, l,Length);
RO'GetSubTex(RowB, 1,Length);

If (ow ==3) then

Langh-FindText(RowC,UN;
Row Infou-GetSubTvct(RowC, 1,Length);
RO=GetSubText(RowC, 1,Length);

If (row = 4) then

L~engtfr-=FindText(RowD,"*)

Row llnfoiGetSubTex(R~owD, 1,Length);
RO-GetSubTcxt(RowD,l1,Length);

IIThis starts the loop looking at fields
do

colcrol+ I;

LO=FindText(RO,"
FO-GetSubText(RO, l,Lo-l);
LX=LO+LX4
RO=GtSubText(RLOJ~+ljLcgth-LX);

if col7l- then if (rowl-) then (jF IlI=FO) else if (row-2) then (F21I FO) else if (row-3)
then (F31I=FO) else (F41I=FO);

if (co1-2) then if (rowv-i-) then (F 12=FO) else if (row--2) then (F22=F0) else if
(row-3) then (F32=FO) else (F42=FO);

177

if (c4-=3) then if (row--I) then (F13=FO) else if (row--2) then (F23=FO) else if
(row-3) then (F33=FO) else (F43=FO);

if (col-4) then if (row='=l) then (F14-=FO) else if (row--2) then (F24-FO) else if
(row-3) then (F34-F0) else (IF44--FO);

if (coi=5-) then if (row--1) then (F1I5=FO) else if (row--2) then (F2 5=FO) else if
(row--3) then (F35=F0) else (F45=FO)

while col<nx;

CloseChannel(AccTalk2)

178

C. Adept Display of Part Information

------ Part Replacement kdo: N0O6

LIM. 441PCFAnF-412Part r. 5381405-1
Al•temate Location:

NONE

Documentation Reference:
SFOI13-20

Norris:

UDr. 4411A3F1-A1 3
Pamrt. 5381390-1
Alternate Location:

NONE
Documentation Reference:

SFO-1 3-20
Notes:

ULW.

Adept Display of Part Information from Database

Figure F-2

2. Database Application Procedures and Macros

Macro:

lNewTxpuery

Actions: OpenQuery: Query: 1XQ

,TestDDENodeRea

Actions: RunCode: Function: GetNodeO

179

I I i I I '-" 0i r |

IMakedable

Actions: RunCode: Function: GetNodeO

RunCode: Function: MakeTableo

lTabjeOnlv

Actions: RunCode: Function: MakeTableo

Actions: SetWarning: On

Warninf~

Actions: SetWarning: Off

Modules:

Procedure DDE
Declarations

Option Compare Database 'Use database order for string comparisons

Dim NodeNum
Dim WM As Database

Function Getbifo 0

DoCmd RunMacro "IMakeTable"

End Function

Function GetNode 0

ChannelNum = DDEInitiate("Adept", "Test92")

NodeNum = DDERequest(ChannelNum, "VARIABLE Node")
Dim db As Database, T As Table

Set db = CurrentDB0
Set T = db.OpenTable("lNX")
T.MoveFirst
T.Delete

180

T.AddNew
T![Nodaf] - NodeNum
T.Updat.

DDETenninat ChawMeium

End Function

DoCmd RumMacro wWafrig ofr

DoCmd RunMscro 0lNewTx Qweryo
DoCmnd RunMacro wWuumn On

End Functios

NOTE. in this Suction mamm wNch be&i with' re not operational (commenct Lonu)

DoCmd RunMacro -Wwai Ogr
$ set WCM - CwremaDBO

* Dim NOWT As TAkl

0So NaWT - bac9. OpwTabie(WNEWTX)
* NewT.MowFrwg
f Do Uui N#wTIR(
0 NCwT~
* New? IAoW*NeX

TI= DIDWr WORK
Dku NX As DymaW. NewTable As DywW Nodeltepi As DynswK. RELACBENT

AsDyMM
Set NX - lMMCaw~d~mu~w(INX')

*Set Nodelapi - MN9I2. sD~yinw(*NODE-REPLO)
1sw etLcb~ w IC.0C9 roa@Dywst(REPLAX:EENT")
0So NWwTabl - MM2CrsMWeDy,.SwKNEWTX)
Tian DU4WF WonK

D RmSQL WS.BCT 0 WMT TswTabl P1014 [NQWE.EPLI
ULACMW4T, IN)ý REIAW I?#1EZ IOXN INKME-REPLJ ON

REPLACEMENT (TJD#j - [NODE-REPLJ.[UD#], INX INNER JOIN (NODE-
REPLJ ON [1NX].[Node# - [NODE-REPLJ4[Nodc#J;s

*DoClud RunSQL *UPDATE TempTa&e SET [Node#] - Fonust[$ode
Chwgcj' (NewN~odcj; t

*DOCmd RumSQL *INSERT Into N4EWTX SELECT * FROM TunipTable;"
* DoCmd RunSQL -DELETE 0 FROM TCIEVNode WHEE [Node#]

Fcwmsi[Node Change) (Nodel;"
*THIS D13DN WORK EnimE
oDoCmd RunSQL OSELECT DISTINCTROW REPLACEMENT. * INTO NEWTX

FROM [NODE-REPL), REPLACEMlENT, INX, REPLACEMENT INNER
JOIN (NODE-REPLI ON REPLACEMlENT.{UD#J - [NODE-
REPLJ.[UDqIANX DONER JOIN [NODE-REPLJ ON (INX].[Node#J [NODE-
REPLJ,[NodeJ;*

*DoCrnd RwaSQL OSELECT DISTINCTROW 0INTO NEWTX FROM (NODE-
REPLJ, REPLACEMENT, INX. REPLACEMtENT INNER JOIN [NODE-
RIEPLI ON REPLACEMENT (UDJI - [NODE-REPLJ.(UD#j,ZNX INNER
JOIN [NODE-REPL] ON [INX).[Nodefl - NODE-REPLUjNodcfl;m

*DoCmnd RuaSQL "SELECT 6 INTO NEWTX FROM [NODE4tEPL),
REPLACEMENT, INX. REPLACEMET INNER JOIN (NODE-REPLJ ON

'EPACEMENT[UD]) - [NODE-REPLJ.[UDU),lNX INNER JOIN [NODE,
REPLI ON (INXJ. (Nod.$) - (N0DE-REPLJ,(NodeJ;"

DoCuad RimMaco -Wwavg On-
End Pumd

132

LIST OF REFERENCES

Campbell, T. and Hudnall M~, Ed., 'Test Lab,- COMPiae, PP. 16-36, August 1993.

CoffeP, *Sp e Datbass,* PC Computing, pp. 270-297, October 1993.

Elmasrip & and Navathe, S., Fwvdmentoav of Database Systems, The

Jenings R. , Ac enMDrwlqper, Gui&, SAMS Publshing. 1993.

Jones, E., Rgsad),-Maid Access 4~hcadm Wzndcresfiýcm-HM~, 1994.

Kroaike, D. K. Dak&z Processift: fw~menfzL desgn. inplementation, Macmillan
PubMi4h6ng Company, 199.

Microoft Corporation, Maw*sof Access L4MrWug Reference, Micrsof Press, 1992.

Mcrosoft Corporain, mkoorqflAcces Usw'sGuide, Mficrosoft Press, 199.

Perchke, S. and Liczbaaiski M., Access/cr V/lnvkws P0.WWrP Porming,* Quo

Smith, D. C., Dewlqimeit of a -A Iteme ad~ Exper System fr due MK 92 MOD
2 Flu CcwaI Sysmm: FC-1 Desiputian - flme. R~mg, Bewvng FC-I

Acllt~,Ft'-) lhwk -Amp.ir Bewtain d dFC-2 Deslgatkw - lime A~mp.
&Boaf FC-2 Acq udtkuq FC-2 lhxk - Am Bawoifg and FC'-4 andI FC-5,
Mut~ Thus* Nxviel Na i4 W t Scbook Man , Cakifxmi, Setmer

S ---,log- CwrpMaimn Sj~wboabi AdepV~ Rwfwewe Syrnixolqc Corporation,
1991.

Whitw 1. L. Bagley, L D., and Barlow, V. K, Sysiv kmAsmRo and Design Methods,
Richad D. rInv* I=c, 1919.

183

BIBLIOGRAPHY

Campbell, T. and HudnAll M., Ed., *Test Lab," Compute, pp. 16-36, August 1993.

Coffee, P. "Super Databases, PC CoMputing, pp. 270-297, October 1993.

Elniasr, R. and Navathe, S., Fwdmsientais of Database Systems, Ile
Bes~min/Cumminp Publishing Company, Inc., 1989.

Jennings, R., A cc.331MDewelper's Guide, SAMS Publishing, 1993.

Jones, E., Ready-Made Acces Applications, windcrest/McGraw-NII, 1994.

Kb""ke D. M., Database P *ning fiinamwntals. designm implementaton, Macmillan
Publan -company, 199.

Iskin, M., HELP! Atlcroft Access, Ziff-Davis Press. 1993.

Mlicrolsoft Cpo AtioMcrosraft Awne LavSwqv Refermnce, Microsoft Press, 1992.

Microsoft Co poration AfkTON$ Accns Uufs Guide, Microsoft Press, 1992.

Pwwhcke, S.and Lie wbmki Ni, Awncc fr Wlmkrws Power Prgrimin,, Que,
Corporation, 1993

Simpson, A., U ksdIMa~ Access, Sybmx Inc., 1993.

SnithD. C., Dwwkpew# / o I a a Adbewe -~K dsoEpm Syteawifr dii AN 92WMD
2 Fbe Ccm.oI Sylain: FC-I Desutim - Thu., Rwig, Bewinfg FC-I
AcpIUtkm. FC-I 7hIx& - RwVe, Swing, wvFC-2 Deslnatkm - Thus., RoWig
Bewing FC-2 Acquistin, FC-2 T)wk -Rowge Sewft n d .iFC-4 and FC-5,
Mesta's Thesis, Navalb Porduante SchooL, Monterey, Calfornia, September

St. Valinwiuae, C., Aces Bask Cookbook Addison-Wesley Publishing Company, 1993.

Symnbologi Coupo nnua S>IubooglcAdeptMRafrwac, SymgoloicCorpraion,

Visecas, J. L, Rjrf qAdcva=* Accnr3dMkrzo"Press, 1993.

WNam I. L., Bdeey, L. D., mand Barlow, V. Ni, S)yuexu Analyss and Design Meo*4,

Ricbwd D. Irwin In=., 1919.

184

INiTIAL DISIM UTION LIST

1. Defee Tecnical Information Center 2
Camero Station
A xandria, VA 22304-6154

2. LiaMy, Code 052 2
Naval Postraduate School
Moer"y, CA 93943-5000

3. Capt. 0. R Perry M
Naval Sea Systems Command
Code 62Z, NC3, Room 8W06
2331 Jedfron Davis Highway
Wshington, DC 22243-5160

4. Mr. Ed McGlI
Naval Sea Systems Command
Code 62ZP, NC3, Room 8W06
2531 Jefawa Davis Highway
Waulimngt. DC 22243-5160

5. FCC Stein
Naval Sea Sysum Coa nmd
Code 62ZP, NC3, Room W06
2531 J •rsm Davis Highway
Waslhitpo. DC 22243-5160

6. CMDR AI. Josph
Poa Henema Disiow
Na Surhce Warm Center
Code 4A00
Port, Huemme, CA 93043

7. Mr Bil Campbel
PMo ilmlee Division
Naval Swroc Wa&Mi Center
Code 4A32
Par, Hummne CA 93043

185

a. Mr. Henry Seto
Port Huene•e Division
Naval Surfce Warfare Ctnter
Code 4A32
Port Hueneme, CA 93043

9. Professo MaSdi Kamel, Code AS/KA 2
Naval Pos dae Schoo
Monterey, CA 94043

10. Pr"o6sor Martin McCaffrey, Code AS/MI
Naval Postgrdaate School
Monterey, CA 93943-000

11. LCDR Sum G. Talley
COMNAVFORKOREA
UNfT# 15250
APO AP 96205-0023

12. LT Janie Cnwor Code 37
Naval Po auat School
Mooterey, CA 93943-o000

186

